首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aim to design an effective breviscapine nanoscale drug delivery system to realize the improvement of its oral bioavailability. Based on the investigations of the stabilities in the gastrointestinal tract (GIT), permeation and efflux across the cell membrane, the breviscapine nanoemulsion (NE) was formulated and evaluated in vitro and in vivo. The globule size and polydispersity index of the NE was 45.6?nm and 0.105, and the efficient encapsulation was 95.2%. In vitro, the drug release from NEs in pH 6.8 PBS fit to the first-order kinetics. The Caco-2 cell transport experiments showed that the breviscapine NE facilitated the improvement of the apparent permeability coefficient (Papp) from the apical side to basilar side compared with the free drug. In vivo, the relative bioavailability of breviscapine NE reached to 249.7%. All the studies implicated that the NE carrier contributed to the enhancement of the oral absorption of breviscapine due to the improved stability and permeation in the GIT. The nanoemulsions technology is better for the poor permeable and unstable active agents in GIT as well as helps the industrial scale process.  相似文献   

3.
Nanomaterial based anticancer treatment is promising nowadays because of their small size that can penetrate and interact both inside and outside the cell surface. In this study, a simple protocol was followed for the conjugation of the biologically synthesized selenium nanoparticles (SeNPs) and short chain synthetic peptide. SeNPs was synthesized by using the culture supernatant of Streptomyces griseoruber, actinomycetes isolated from the soil. The short chain peptide Boc-L-F-OMe was synthesized by the conventional solution phase chemistry using a racemization-free fragment condensation strategy. Peptide interaction with different anticancer receptors was preliminarily studied by docking studies. Biosynthesized SeNPs was conjugated with short chain synthetic peptides by means of cysteine conjugation. Characterization of SeNPs with peptide was done by UV–visible spectroscopy and DLS that showed the red shift in the peak and increase in average particle size and zeta potential, respectively. Bioconjugated SeNPs- peptide was tested for its cytotoxicity against the colon cancer cell line HT-29. Bioconjugated SeNPs-peptide showed enhanced cytotoxic activity when compared to the peptide and nanoparticle alone that was tested at 10–50 µg/ml concentration. Further apoptotic studies were done by AO/PI staining and DNA fragmentation assay that confirms the cytotoxicity of the conjugates. Novel peptide-SeNPs conjugates tested in our study has a significant anticancer activity that can be potentially used for targeting the cancer cells.  相似文献   

4.
Aims: Recently, salinomycin (SAL) has been reported to inhibit proliferation and induce apoptosis in various tumors. The aim of this study was to deliver SAL to orthotopic model of pancreatic cancer by the aid of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs).

Methods: The NPs were physico-chemically characterized and evaluated for cytotoxicity on luciferase-transduced AsPC-1 cells in vitro as well as implanted orthotopically into the pancreas of nude mice.

Results: SAL (3.5 mg/kg every other day) blocked tumor growth by 52% compared to the control group after 3 weeks of therapy. Western blotting of tumor protein extracts indicated that SAL treatment leads to up-regulation of E-cadherin, β-catenin, and transforming growth factor beta receptor (TGFβR) expressions in AsPC-1 orthotopic tumor. Noteworthy, immunofluorescence staining of adjacent tumor sections showed that treatment with SAL NPs cause significant apoptosis in the tumor cells rather than the stroma. Further investigations also revealed that TGFβR2 over-expression was induced in stroma cells after treatment with SAL NPs.

Conclusion: These results highlight SAL-loaded PLGA NPs as a promising system for pancreatic cancer treatment, while the mechanistic questions need to be subsequently tested.  相似文献   


5.
Abstract

Due to their crystalline nature, the encapsulation of hydrophobic corticosteroids within polymeric nanoparticles by o/w solvent evaporation method is often difficult to achieve. The aim of this study was to evaluate the effect of both process and formulation parameters on the encapsulation of a model corticosteroid: methylprednisolone (MP). For this purpose, a 32factorial design was performed evaluating the effects of the concentration of emulsifiers and sonication time on the manufactured nanoparticles, followed by a multiresponse optimization. The study also included the evaluation of other parameters such as the type of organic solvent used, polymer characteristics and the initial mass of drug. The optimal nanoparticle formulation using 0.25% (w/v) of emulsifying agent (Polyvinyl-alcohol, PVA) and 5 min of sonication was then characterized. The highest encapsulation was obtained with an organic phase consisting of acetone: dichloromethane (1:1), polyD,L-lactide-co-glycolide (PLGA) 50:50 as polymer and an initial mass of 6.6 mg of methylprednisolone. Nanoparticles size and ζ potential of optimized formulation were respectively around 230 nm and ?14 mV. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles. Release study showed that MP-loaded nanoparticles sustained drug release for up to 120 h. This study reflects the importance of factorial design to optimize the manufacture of nanoparticles encapsulating hydrophobic drugs.  相似文献   

6.
Gold nanoparticles (AuNPs) with core sizes below 2 nm and compact ligand shells constitute versatile platforms for the development of novel reagents in nanomedicine. Due to their ultrasmall size, these AuNPs are especially attractive in applications requiring delivery to crowded intracellular spaces in the cytosol and nucleus. For eventual use in vivo, ultrasmall AuNPs should ideally be monodisperse, since small variations in size may affect how they interact with cells and how they behave in the body. Here we report the synthesis of ultrasmall, uniform 144-atom AuNPs protected by p-mercaptobenzoic acid followed by ligand exchange with glutathione (GSH). Quantitative scanning transmission electron microscopy (STEM) reveals that the resulting GSH-coated nanoparticles (Au(GSH)) have a uniform mass distribution with cores that contain 134 gold atoms on average. Particle size dispersity is analyzed by analytical ultracentrifugation, giving a narrow distribution of apparent hydrodynamic diameter of 4.0 ± 0.6 nm. To evaluate the nanoparticles' intracellular fate, the cell-penetrating peptide TAT is attached noncovalently to Au(GSH), which is confirmed by fluorescence quenching and isothermal titration calorimetry. HeLa cells are then incubated with both Au(GSH) and the Au(GSH)-TAT complex, and imaged without silver enhancement of the AuNPs in unstained thin sections by STEM. This imaging approach enables unbiased detection and quantification of individual ultrasmall nanoparticles and aggregates in the cytoplasm and nucleus of the cells.  相似文献   

7.
Abstract

Objective: The purpose of this study was to prepare the positively charged chitosan (CS)- or hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-modified solid lipid nanoparticles (SLNs) loading docetaxel (DTX), and to evaluate their properties in vitro and in vivo.

Methods: The DTX-loaded SLNs (DTX-SLNs) were prepared through an emulsion solvent evaporation method and further modified with CS or HACC (CS-DTX-SLNs or HACC-DTX-SLNs) via noncovalent interactions. The gastrointestinal (GI) stability, dissolution rate, physicochemical properties and cytotoxicities of SLNs were investigated. In addition, the GI mucosa irritation and oral bioavailability of SLNs were also evaluated in rats.

Results: The HACC-DTX-SLNs were highly stable in simulated gastric and intestinal fluids (SGF and SIF). By contrast, the CS-DTX-SLNs were less stable in SIF than in SGF. The drug dissolution remarkably increased when DTX was incorporated into the SLNs, which may be attributed to the change in the crystallinity of DTX and some molecular interactions that occurred between DTX and the carriers. The SLNs showed low toxicity in Caco-2 cells and no GI mucosa irritations were observed in rats. A 2.45-fold increase in the area under the curve of DTX was found in the HACC-DTX-SLN group compared with the DTX group after the modified SLNs were orally administered to rats. However, the oral absorption of DTX-SLN or CS-DTX-SLN group showed no significant difference compared with that of DTX group.

Conclusions: The positively charged HACC-DTX-SLNs with a stable particle size could provide the enhanced oral bioavailability of DTX in rats.  相似文献   

8.
Context: Combination therapies provide a potential solution to address the tumor heterogeneity and drug resistance issues by taking advantage of distinct mechanisms of action of the multiple therapeutics.

Objective: To design arginine-glycineaspartic acid (RGD) modified lipid-coated nanoparticles (NPs) for the co-delivery of the hydrophobic drugs against hepatocellular carcinoma (HCC).

Materials and methods: RGD modified lipid-coated PLGA NPs were developed for the targeted delivery of both sorafenib (SRF) and quercetin (QT) (RGD-SRF-QT NPs). Chemical–physical characteristics and release profiles were evaluated. In vitro cell viability assays were carried out on HCC cells. In vivo antitumor efficacies were evaluated in HCC animal model.

Results and discussion: The combination of SRF and QT formulations was more effective than the single drug formulations in both NPs and solution groups. RGD-SRF-QT NPs achieved the most significant tumor growth inhibition effect in vitro and in vivo.

Conclusion: The resulting NPs could provide a promising platform for co-delivery of multiple anticancer drugs for achievement of combinational therapy and could offer potential for enhancing the therapeutic efficacy on HCC.  相似文献   


9.
Objective: To develop an oral sustained release formulation of mycophenolate mofetil (MMF) for once-daily dosing, using chitosan-coated polylactic acid (PLA) or poly(lactic-co-glycolic) acid (PLGA) nanoparticles. The role of polymer molecular weight (MW) and drug to polymer ratio in encapsulation efficiency (EE) and release from the nanoparticles was explored in vitro.

Methods: Nanoparticles were prepared by a single emulsion solvent evaporation method where MMF was encapsulated with PLGA or PLA at various polymer MW and drug: polymer ratios. Subsequently, chitosan was added to create coated cationic particles, also at several chitosan MW grades and drug: polymer ratios. All the formulations were evaluated for mean diameter and polydispersity, EE as well as in vitro drug release. Differential scanning calorimetry (DSC), surface morphology, and in vitro mucin binding of the nanoparticles were performed for further characterization.

Results: Two lead formulations comprise MMF: high MW, PLA: medium MW chitosan 1:7:7 (w/w/w), and MMF: high MW, PLGA: high MW chitosan 1:7:7 (w/w/w), which had high EE (94.34% and 75.44%, respectively) and sustained drug release over 12?h with a minimal burst phase. DSC experiments revealed an amorphous form of MMF in the nanoparticle formulations. The surface morphology of the MMF NP showed spherical nanoparticles with minimal visible porosity. The potential for mucoadhesiveness was assessed by changes in zeta potential after incubation of the nanoparticles in mucin.

Conclusion: Two chitosan-coated nanoparticles formulations of MMF had high EE and a desirable sustained drug release profile in the effort to design a once-daily dosage form for MMF.  相似文献   


10.
Nifedipine (NF) is a poorly water-soluble drug, of low and irregular bioavailability after oral administration. Although some reports have attempted to improve the dissolution of NF using solid dispersions and solubilizers, little literature information is available on the in vivo performance of such preparations. The aim of the present work was to improve the therapeutic efficacy of NF via incorporation into different types of carriers, and to investigate their in vitro dissolution and bioavailability in rabbits. Nifedipine solid dispersions were prepared by fusion, solvent, and freeze-drying methods with polyethylene glycol (PEG) 6000 and PEG monomethylether 5000 (PEG MME 5000). Complexation of NF with β-cyclodextrin (β-CyD) and solubilization by sodium lauryl sulfate (SLS) have also been studied. The dissolution was determined by the flow-through cell in order to maintain perfect sink conditions. The solid dispersions resulted in a significant increase in the dissolution rate as compared to pure drug. The highest NF dissolution rate was obtained from solid dispersions containing 95% PEG 6000 prepared by the solvent method. While, unexpectedly, the highest absorption in rabbits was obtained from 95% PEG 6000 prepared by the fusion method. Compared to SLS, β-CyD gave higher in vitro and in vivo values. Differential scanning calorimetry (DSC) and powder x-ray diffractometry indicated that NF in solid dispersions is homogeneously distributed, and no drug crystallized out of the system. The DSC thermograms of NF-β-CyD complex and NF/SLS solid mixture showed a decrease in the NF endothermic peak. The x-rays showed different diffraction patterns of pure NF and pure carrier, suggesting the formation of a new solid form.  相似文献   

11.
The water-soluble peptide, melittin, was modified with an anionic agent, sodium dodecyl sulfate by hydrophobic ion-pairing. Investigations showed that the formed complex was very soluble in organic solvent, especially, in dimethylsulfoxide and dehydrated alcohol. Furthermore, the physiochemical properties of the complex in the solid state or in an aqueous medium were characterized using octanol/water partition measurement, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The complex was formulated into poly(d,l-lactide–co-glycolide acid) nanoparticles by an emulsion solvent diffusion method. It was found that the nanoparticles of about 130 nm in size can be produced with a high encapsulation efficiency, and the entrapment of nanoparticles prepared with the formed complex increased from about 50% to nearly 100% compared with that for pure melittin. Moreover, the growth inhibitory effects of modified melittin and melittin-loaded nanoparticles in breast cancer MCF-7 cells were not changed comparing with free melittin as determined by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay.  相似文献   

12.
Context: Polymeric carrier systems of paclitaxel (PCT) offer advantages over only available formulation Taxol® in terms of enhancing therapeutic efficacy and eliminating adverse effects. Objective: The objective of the present study was to prepare poly (lactic-co-glycolic acid) nanoparticles containing PCT using emulsion solvent evaporation technique. Methods: Critical factors involved in the processing method were identified and optimized by scientific, efficient rotatable central composite design aiming at low mean particle size and high entrapment efficiency. Twenty different experiments were designed and each formulation was evaluated for mean particle size and entrapment efficiency. The optimized formulation was evaluated for in vitro drug release, and absorption characteristics were studied using in situ rat intestinal permeability study. Results: Amount of polymer and duration of ultrasonication were found to have significant effect on mean particle size and entrapment efficiency. First-order interactions of amount of miglyol with amount of polymer were significant in case of mean particle size, whereas second-order interactions of polymer were significant in mean particle size and entrapment efficiency. The developed quadratic model showed high correlation (R2 > 0.85) between predicted response and studied factors. The optimized formulation had low mean particle size (231.68 nm) and high entrapment efficiency (95.18%) with 4.88% drug content. The optimized formulation showed controlled release of PCT for more than 72 hours. In situ absorption study showed faster and enhanced extent of absorption of PCT from nanoparticles compared to pure drug. Conclusion: The poly (lactic-co-glycolic acid) nanoparticles containing PCT may be of clinical importance in enhancing its oral bioavailability.  相似文献   

13.
The aim of this work was to prepare L-DOPA loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles by a modified water-in-oil-in-water (W1/O/W2) emulsification solvent evaporation method. A central composite design was applied for optimization of the formulation parameters and for studying the effects of three independent variables: PLGA concentration, polyvinyl alcohol (PVA) concentration and organic solvent removal rate on the particle size and the entrapment efficiency (response variables). Second-order models were obtained to adequately describe the influence of the independent variables on the selected responses. The analysis of variance showed that the three independent variables had significant effects (p < 0.05) on the responses. The experimental results were in perfect accordance with the predictions estimated by the models. Using the desirability approach and overlay contour plots, the optimal preparation area can be highlighted. It was found that the optimum values of the responses could be obtained at higher concentration of PLGA (5%, w/v) and PVA (6%, w/v); and faster organic solvent removal rate (700 rpm). The corresponding particle size was 256.2 nm and the entrapment efficiency was 62.19%. FTIR investigation confirmed that the L-DOPA and PLGA polymer maintained its backbone structure in the fabrication of nanoparticles. The scanning electron microscopic images of nanoparticles showed that all particles had spherical shape with porous outer skin. The results suggested that PLGA nanoparticles might represent a promising formulation for brain delivery of L-DOPA. The preparation of L-DOPA loaded PLGA nanoparticles can be optimized by the central composite design.  相似文献   

14.
15.
Non-small cell lung cancer (NSCLC) patients with sensitizing mutations in the exons 18–21 of the epithelial growth factor receptor (EGFR) gene show increased kinase activity of EGFR. Hence, tyrosine kinase inhibitors (TKIs) such as erlotinib (ETB) have commonly been used as the second line therapeutic option for the treatment of metastatic NSCLC. While the ETB is available as an oral dosage form, the local delivery of this TKI to the diseased cells of the lung may ameliorate its therapeutic impacts. In the current study, we report on the development of ETB-loaded solid lipid nanoparticle (SLN) based formulation of dry powder inhaler (ETB-SLN DPI). ETB-SLNs were formulated using designated amount of compritol/poloxamer 407. The engineered ETB-SLNs showed sub-100?nm spherical shape with an encapsulation efficiency of 78.21%. MTT assay and DAPI staining revealed that the ETB-SLNs enhanced the cytotoxicity of cargo drug molecules in the human alveolar adenocarcinoma epithelial A549 cells as a model for NSCLC. To attain the ETB-SLN DPI, the ETB-SLNs were efficiently spray dried into microparticles (1–5?μm) along with mannitol. The ETB-SLN DPI powder displayed suitable flowability and aerodynamic traits. The Carr's Index, Hausner ratio and Next Generation Impactor (NGI) analyses confirmed deep inhalation pattern of the formulation. Based on these findings, we propose the ETB-SLN DPI as a promising treatment modality for the NSCLC patients.  相似文献   

16.
Objective: Preparation of magnolol-loaded amorphous solid dispersion was investigated for improving the bioavailability.

Materials and methods: A solid dispersion of magnolol was prepared with polyvinylpyrrolidone K-30 (PVP) by melting method, and the physical properties were characterized by using differential scanning calorimetry, powder X-ray diffractometry, Fourier transformation-infrared spectroscopy and scanning electron microscope. In addition, dissolution test was also performed. Subsequently, the bioavailability of magnolol pure compound, its physical mixture and solid dispersion were compared in rabbits. The blood samples withdrawn via marginal ear vein at specific time points were assayed by HPLC method.

Results: Oral administration of the solid dispersion of magnolol with PVP significantly increased the systemic exposures of magnolol and magnolol sulfates/glucuronides by 80.1% and 142.8%, respectively, compared to those given with magnolol pure compound.

Conclusion: Magnolol-loaded amorphous solid dispersion with PVP has demonstrated enhanced bioavailability of magnolol in rabbits.  相似文献   


17.
Small silver (Ag) nanoparticles (with diameter smaller than 50 nm) can lead to a resonant light absorption accompanied by an enhanced electromagnetic field in their vicinity when they are irradiated by light due to so-called localized surface plasmon. In order to study the influence of metal nanoparticles in thin-film silicon solar cells in more detail, a photosensitive test structure based on a-Si:H and consisting of a TCO/(nanoparticles)/i/n/TCO layer stack was realized. A higher quantum efficiency of the test structure is achieved for wavelengths longer than 800 nm compared to the structure without nanoparticles. As a-Si:H only efficiently absorbs light for wavelenghts of up to 800 nm, the enhanced photocurrent cannot be explained by improved light absorption in a-Si:H.  相似文献   

18.
Objective: Gentamicin sulfate (GS)–loaded poly lactic-co-glycolic acid (PLGA) polymeric nanoparticles (PNPs) were developed and incorporated in film for the treatment of surgical site infection (SSI).

Method: PNPs were prepared by double emulsification solvent removal technique using ethyl acetate solution containing PLGA and polyvinyl alcohol (PVA) as an emulsifier. The emulsion was re-emulsified using Gum Kondagogu (GKK). PNPs loaded film was prepared with 5% w/v solution of pullulan in PNPs using solvent casting technique. Design of Experiment (DoE) study using Box–Behnken design was performed for the optimization of PNPs. Drug release study was carried out for PNPs at phosphate buffer saline (PBS) pH 6.4 and simulated wound fluid (SWF) pH 7.4.

Result: PNPs were found to have average particle size 280?±?12.04?nm, polydispersity index (PDI) 0.15?±?0.01 and zeta potential – 4.9?±?0.84?mV. Scanning electron microscopy (SEM) showed spherical nature of PNPs along with particle size of 160?±?35.30?nm confirmed with transmission electron microscopy (TEM). PNPs were found to be effective against Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA). Optimized batch of film showed in vitro disintegration time below 8?min with tensile strength (TS) 0.06?±?0.03 N/cm2 and percentage elongation (% E) 70.95?±?4.29. X-ray diffraction study (XRD) confirmed amorphous nature of GS, PLGA, pullulan, GKK and film.

Conclusion: PNPs showed controlled release of GS after an initial burst release. Developed film can be an effective approach for management of SSI and control of antibiotic induced drug resistance.  相似文献   


19.
Objective: The purpose of this work was to develop a controlled release of ziprasidone with no food effect by the osmotic release strategy.

Methods: The solution of ziprasidone and poloxamer188 (P188) with different weight ratios was spray-dried to form solid dispersion of ziprasidone (SD-ZIP). The SD-ZIP was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (X-RD) and solubility testing. The SD-ZIP osmotic pump tablets were prepared by wet granulation method. The effect of formulation variables on the release characteristic was investigated. The SD-ZIP osmotic pump tablets were administered to fasted and fed beagle dogs and their pharmacokinetics were compared to commercial formulation Zeldox® as a control.

Results: The results of DSC and X-RD indicated that ziprasidone resides in P188 with no crystalline changes. Solubility studies demonstrated that the solubility of SD-ZIP was substantially improved compared to ziprasidone and physical mixtures of ziprasidone and P188. The optimized formulation and drug release profiles of SD-ZIP osmotic pump tablets in different medium were obtained which showed typical osmotically controlled release and could fitted to zero-order kinetics with good linear correlation. Pharmacokinetic studies in beagle dogs showed ziprasidone with prolong actions and no food effect was achieved simultaneously in SD-ZIP osmotic pump tablet compared with Zeldox®.

Conclusion: The SD-ZIP osmotic pump tablet could be able to enhance the bioavailability in the fasted state and showed sustained release with prolonged actions.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号