首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metals are widely used in engineering as well as medical applications. However, their surfaces are easily colonized by bacteria that form biofilms. Among the numerous concerns with biofilm formation, biocorrosion is of particular importance in industry, because structural integrity may be compromised, leading to technical failures. In the food industry and medical field, biofilms also pose health risks. To inhibit bacterial colonization, the surfaces of metals can be coated with a polymeric layer which is antiadhesive and/or bactericidal. This article describes polymers that have these desired properties and the methodologies for immobilizing them on metal surfaces of relevance to the marine and medical fields. The focus is on polymer coatings that have a high degree of stability in aqueous medium and do not leach out. The efficacies of the different polymer coatings against bacteria commonly encountered in marine (Desulfovibrio desulfuricans) and medical applications (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) are demonstrated.  相似文献   

2.
Titanium(Ti)and titanium alloys have become widely used as biomedical materials in orthopedics because of their good machinability,corrosion resistance,low elastic modulus and excellent biocom-patibility.However,when Ti-based implants are used for bone repair and replacement,they are easy to cause bacteria adhesion and aggregation,which leads to postoperative infection.In addition,Ti and its alloys,as bio-inert materials,cannot induce desirable tissue responses such as osseointegration after implantation,which will eventually lead to implant loosening.Postoperative bacterial infection and lack of osseointegration directly lead to the failure of implantation surgery and are not conductive to the long-term service of titanium-based implants.Recently,researchers have made many attempts to focus on the surface modification of multifunctional Ti-based implants to endow them with both antibacterial activity and simultaneous osteoinductive property.In this review,we primarily highlighted the recent progresses in the surface design of Ti implants with both antimicrobial and osteoinductive properties for orthopedic applications.First,the challenges for treating implant-associated infections were briefly introduced such as the emergence of antibiotic resistance,the formation of biofilms,and the construction of cell-selective surfaces.Some of the essential fundamentals were concisely introduced to address these emerging challenges.Next,we intended to elaborate the potential strategies of multifunctional surface design to endow good osseointegration for antibacterial Ti implants and highlighted the recent advances of the implants.We hope that this review will provide theoretical basis and technical support for the development of new Ti implant with antibacterial and osteogenic functions.  相似文献   

3.
Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.  相似文献   

4.
The study of photocatalysts fixed to surfaces for the inactivation of bacteria in wastewater has increased in recent years. However, there are no standardized methods to analyze the photocatalytic antibacterial activity of these materials, and no systematic studies have attempted to relate this activity to the number of reactive oxygen species generated during UV-light irradiation. Additionally, studies regarding photocatalytic antibacterial activity are usually carried out with varying pathogen concentrations, UV light doses, and catalyst amounts, making it difficult to compare results across different materials. The work introduces the photocatalytic bacteria inactivation efficiency (PBIE) and bacteria inactivation potential of hydroxyl radicals (BIPHR) figures of merit for evaluating the photocatalytic activity of catalysts fixed onto surfaces for bacteria inactivation. To demonstrate their applicability, these parameters are calculated for various photocatalytic TiO2-based coatings, accounting for the catalyst area, the kinetic reaction rate constant associated with bacteria inactivation and hydroxyl radical formation, reactor volume, and UV light dose. This approach enables a comprehensive comparison of photocatalytic films prepared by different fabrication techniques and evaluated under diverse experimental conditions, with potential applications in the design of fixed-bed reactors.  相似文献   

5.
Biofilms grow on various surfaces and in many different environments, a phenomenon that constitutes major problems in industry and medicine. Despite their importance little is known about the viscoelastic properties of biofilms and how these depend on the chemical microenvironment. Here, we find that the mechanical properties of Pseudomonas aeruginosa (P.a.) biofilms are highly robust towards chemical perturbations. Specifically, we observe that P.a. biofilms are able to fully regain their initial stiffness after yielding is enforced, even in the presence of chemicals. Moreover, only trivalent ions and citric acid significantly affect the biofilm elasticity, the first of which also alter the texture of the material. Finally, our results indicate that biofilm mechanics and bacteria viability inside the biofilm are not necessarily linked which suggests that targeting bacteria alone might not be sufficient for biofilm removal strategies.  相似文献   

6.
过滤介质作为过滤装置中的关键材料可改变流经其中的水的质量.正确选择过滤介质对于过滤装置的过滤性能至关重要.再生玻璃作为介质过滤装置中硅砂的替代品,具有比硅砂廉价、环境友好、可再生等优点,并且可以根据特定的设计要求将其粉碎成不同的尺寸.然而,水中存在大量的诸如细菌和藻类的微生物,故再生的可循环玻璃介质的过滤效率受到在其表面富集的生物膜的极大限制.本研究中,我们通过在钠钙玻璃球(GS)表面上进行氢氟酸(HF)蚀刻和原位结晶制备了用聚多巴胺(PDA)和银(Ag)纳米颗粒改性的氢氟酸蚀刻玻璃球(PDA-Ag-HF/GSs).银晶体的原位生长、HF蚀刻和PDA涂层的改性赋予了PDA-Ag-HF/GS良好的亲水性.银涂层的改性还使得PDA-Ag-HF/GS具有出色的抗菌性能和较小的球藻附着力,且通过释放Ag离子可抑制微生物的生长.PDA涂层上的邻苯二酚官能团可通过螯合作用调节Ag离子的释放.良好的抗菌性能、抗藻类附着力和Ag离子的受控释放表明,PDA-AgHF/GS涂层可有效抑制材料表面生物膜的形成,为抗生物膜的形成提供了新的策略.  相似文献   

7.
Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)are the most typical pathogenic bacteria with a significantly high risk of bio-contamination,widely existing in hospital and public places.Recent studies on antibacterial materials and the related mechanisms have attracted more interests of researchers.However,the antibacterial behavior of materials is usually evaluated separately on the single bacterial strain,which is far from the practical condition.Actually,the interaction between the polymicrobial communities can promote the growing profile of bacteria,which may weaken the antibacterial effect of materials.In this work,a 420 copper-bearing martensitic stainless steel(420 CuSS)was studied with respect to its antibacterial activity and the underlying mechanism in a co-culturing infection model using both E.coli and S.au reus.Observed via plating and counting colony forming units(CFU),Cu releasing,and material characterization,420 CuSS was proved to present excellent antibacterial performance against the mixed bacteria with an approximately 99.4%of antibacterial rate.In addition,420 CuSS could effectively inhibit the biofilm formation on its surfaces,resulting from a synergistic antibacterial effect of Cu ions,Fe ions,reactive oxygen species(ROS),and proton consumption of bacteria.  相似文献   

8.
A biofilm is an accumulation of micro-organisms and their extracellular products forming a structured community on a surface. Biofilm formation on medical devices has severe health consequences as bacteria growing in this lifestyle are tolerant to both host defense mechanisms and antibiotic therapies. However, silver and zinc ions inhibit the attachment and proliferation of immature biofilms. The objective of this study is to evaluate whether it is possible to produce silver and zinc-containing glass polyalkenoate cement (GPC) coatings for medical devices that have antibacterial activity and which may therefore inhibit biofilm formation on a material surface. Two silver and zinc-containing GPC coatings (A and B) were synthesised and coated onto Ti6Al4V discs. Their handling properties were characterised and atomic absorption spectrometery was employed to determine zinc and silver ion release with coating maturation up to 30 days. The antibacterial properties of the coatings were also evaluated against Staphylococcus aureus and a clinical isolate of Pseudomonas aeruginosa using an agar diffusion assay method. The majority of the zinc and silver ions were released within the first 24 h; both coatings exhibited antibacterial effect against the two bacterial strains, but the effect was more intense for B which contained more silver and less zinc than A. Both coatings produced clear zones of inhibition with each of the two organisms tested. In this assay, Ps. aeruginosa was more sensitive than S. aureus. The diameters of these zones were reduced after the coating had been immersed in water for varying periods due to the resultant effect on ion release.  相似文献   

9.
Biofilm formation, also known as microfouling, on indwelling medical devices such as catheters or prosthetic joints causes difficult to treat and recurrent infections. It is also the initial step for biocorrosion of surfaces in aquatic environment. An efficient prevention of microfouling is preferable but the development of antibiofilm surfaces is enormously challenging. Therefore, soda-lime, aluminosilicate, and three borosilicate glasses with different TiO2 and ZnO compositions were investigated on their feasibility to prevent biofilm formation by standardized in vitro biofilm assays using different pathogenic bacteria. Furthermore, the biocompatibility of these glasses was evaluated using eukaryotic cell lines end erythrocytes. Only two borosilicate glasses, containing TiO2 and ZnO, showed an increased antibiofilm performance inhibiting biofilm adhesion and formation. The biofilm thickness and area were significantly reduced by over 90?% and characterized by diffuse structures. All tested glass types showed neither cytotoxicity nor hemotoxicity. Therefore, the antibiofilm borosilicate-thin glasses are qualified for surface coatings where biofilms are not desirable such as on medical devices.  相似文献   

10.
Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically, we describe quorum sensing and surface motility exhibited by the bacterium Pseudomonas aeruginosa, a ubiquitous environmental organism that acts as an opportunistic human pathogen in immunocompromised individuals. P. aeruginosa uses acyl-homoserine lactone signals during quorum sensing to synchronize gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P. aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces.  相似文献   

11.
Tap water is one of the most commonly used water resources in our daily life. However, the increasing water contamination and the health risk caused by pathogenic bacteria, such as Staphylococcus aureus and Escherichia coli have attracted more attention. The mutualism of different pathogenic bacteria may diminish antibacterial effect of antibacterial agents. It was found that materials used for making pipe and tap played one of the most important roles in promoting bacterial growth. This paper is to report the performance of an innovative type 304 Cu-bearing stainless steel(304Cu SS) against microbes in tap water. The investigation methodologies involved were means of heterotrophic plate count, contact angle measurements, scanning electron microscopy for observing the cell and subtract surface morphology,atomic absorption spectrometry for copper ions release study, and confocal laser scanning microscopy used for examining live/dead bacteria on normal 304 stainless steel and 304 Cu SS. It was found that the surface free energy varied after being immersed in tap water with polar component and Cu ions release.The results showed 304 Cu SS could effectively kill most of the planktonic bacteria(max 95.9% antibacterial rate), and consequently inhibit bacterial biofilms formation on the surface, contributing to the reduction of pathogenic risk to the surrounding environments.  相似文献   

12.
Cu-bearing stainless steel has been found to have obvious inhibition performance against encrustation in vitro. This study was aiming to further investigate the inhibitory effect of a Cu-bearing stainless steel(316 L-Cu SS) on the infectious encrustation based on its antimicrobial activity. The encrustation in presence of bacteria, antibacterial performance, urease production and Ca and Mg precipitation were examined by scanning electron microscopy, antibacterial assay, enzyme-linked immunosorbent assay and inductively coupled plasma-mass spectrometry, respectively. It was found that 316 L-Cu SS could inhibit the formation of bacterial biofilm due to the release of Cu~(2+) ions and then decrease the urease amount splitting by bacteria, which produced a neutral environment with pH around 7. However, more encrustations coupled with bacterial biofilms on the surface of comparison stainless steel(316 L SS) with an alkaline environment were recorded. It can thus be seen that the 316 L-Cu SS highlights prominent superiority against encrustation in the presence of microorganisms.  相似文献   

13.
Laminar flow around corners triggers the formation of biofilm streamers   总被引:1,自引:0,他引:1  
Bacterial biofilms have an enormous impact on medicine, industry and ecology. These microbial communities are generally considered to adhere to surfaces or interfaces. Nevertheless, suspended filamentous biofilms, or streamers, are frequently observed in natural ecosystems where they play crucial roles by enhancing transport of nutrients and retention of suspended particles. Recent studies in streamside flumes and laboratory flow cells have hypothesized a link with a turbulent flow environment. However, the coupling between the hydrodynamics and complex biofilm structures remains poorly understood. Here, we report the formation of biofilm streamers suspended in the middle plane of curved microchannels under conditions of laminar flow. Experiments with different mutant strains allow us to identify a link between the accumulation of extracellular matrix and the development of these structures. Numerical simulations of the flow in curved channels highlight the presence of a secondary vortical motion in the proximity of the corners, which suggests an underlying hydrodynamic mechanism responsible for the formation of the streamers. Our findings should be relevant to the design of all liquid-carrying systems where biofilms are potentially present and provide new insights on the origins of microbial streamers in natural and industrial environments.  相似文献   

14.
Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray--thus mimicking an extremely compliant flat surface--bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.  相似文献   

15.
Frequent food poisoning and food-borne diseases outbreaking in recent years have caused people to attach great attention to food safety,especially the food contact materials that are essential in the food industrial chains and daily lives,ensuring their clean sanitation are of great importance in blocking micro-bial contamination and spread of food-borne pathogens.Stainless steel(SS)is one of the most accepted and widely used food contact material,and the Cu-bearing SS possesses excellent antibacterial perfor-mance and maintains the original mechanical properties of SS,maybe making it a better substitute for the conventional SS in the food area.Taking advantages of bactericidal and antifouling properties of Cu-bearing SS,this study simulated a variety of food contact scenarios,explored a new strategy for food preservation and food safety by using Cu-bearing SS as a food contact material.The results showed that the Cu-bearing SS could not only delay the spoilage of different foods by inhibiting the activity of microor-ganisms in foods,but also reduce the expressions of spoilage traits of bacteria as well as the formation of biofilms by quenching the quorum-sensing signals,and further creating a good bacteriostatic atmo-sphere for the contacted food and its surrounding environment.In addition,the remarkable antifouling property of Cu-bearing SS would give the material a self-cleaning feature for food applications,which can avoid secondary contamination of food as a source of contamination.This study well demonstrates that the Cu-bearing SS has broad application potentials and prospects in the food area.  相似文献   

16.
The human society is faced with daunting threats from bacterial infections. Over decades, a variety of antibacterial polymeric nanosystems have exhibited great promise for the eradication of multidrug‐resistant bacteria and persistent biofilms by enhancing bacterial recognition and binding capabilities. In this Review, the “state‐of‐the‐art” biodegradable antibacterial polymeric nanosystems, which could respond to bacteria environments (e.g., acidity or bacterial enzymes) for controlled antibiotic release or multimodal antibacterial treatment, are summarized. The current antibacterial polymeric nanosystems can be categorized into antibiotic‐containing and intrinsic antibacterial nanosystems. The antibiotic‐containing polymeric nanosystems include antibiotic‐encapsulated nanocarriers (e.g., polymeric micelles, vesicles, nanogels) and antibiotic‐conjugated polymer nanosystems for the delivery of antibiotic drugs. On the other hand, the intrinsic antibacterial polymer nanosystems containing bactericidal moieties such as quaternary ammonium groups, phosphonium groups, polycations, antimicrobial peptides (AMPs), and their synthetic mimics, are also described. The biodegradability of the nanosystems can be rendered by the incorporation of labile chemical linkages, such as carbonate, ester, amide, and phosphoester bonds. The design and synthesis of the degradable polymeric building blocks and their fabrications into nanosystems are also explicated, together with their plausible action mechanisms and potential biomedical applications. The perspectives of the current research in this field are also described.  相似文献   

17.
Bacterial infections caused by antibiotic‐resistant strains are of deep concern due to an increasing prevalence, and are a major cause of morbidity in the United States of America. In particular, medical device failures, and thus human lives, are greatly impacted by infections, where the treatments required are further complicated by the tendency of pathogenic bacteria, such as Staphylococcus aureus, to produce antibiotic resistant biofilms. In this study, a panel of relevant antibiotics used clinically including penicillin, oxacillin, gentamicin, streptomycin, and vancomycin are tested, and although antibiotics are effective against free‐floating planktonic S. aureus, either no change in biofilm function is observed, or, more frequently, biofilm function is enhanced. As an alternative, superparamagnetic iron oxide nanoparticles (SPION) are synthesized through a two‐step process with dimercaptosuccinic acid as a chelator, followed by the conjugation of metals including iron, zinc, and silver; thus, the antibacterial properties of the metals are coupled to the superparamagnetic properties of SPION. SPION might be the ideal antibacterial treatment, with a superior ability to decrease multiple bacterial functions, target infections in a magnetic field, and had activity better than antibiotics or metal salts alone, as is required for the treatment of medical device infections for which no treatment exists today.  相似文献   

18.
Physicochemical regulation of biofilm formation   总被引:4,自引:0,他引:4  
This article reviews the physical and chemical constraints of environments on biofilm formation. We provide a perspective on how materials science and engineering can address fundamental questions and unmet technological challenges in this area of microbiology, such as biofilm prevention. Specifically, we discuss three factors that impact the development and organization of bacterial communities. (1) Physical properties of surfaces regulate cell attachment and physiology and affect early stages of biofilm formation. (2) Chemical properties influence the adhesion of cells to surfaces and their development into biofilms and communities. (3) Chemical communication between cells attenuates growth and influences the organization of communities. Mechanisms of spatial and temporal confinement control the dimensions of communities and the diffusion path length for chemical communication between biofilms, which, in turn, influences biofilm phenotypes. Armed with a detailed understanding of biofilm formation, researchers are applying the tools and techniques of materials science and engineering to revolutionize the study and control of bacterial communities growing at interfaces.  相似文献   

19.
总结国内外和本课题组在抗菌膜表面的构建、抗菌机理、应用前景等方面的研究进展和现状,探讨潜在的问题与挑战.  相似文献   

20.
Novel researches are focused on the prevention and management of post-operative infections. To avoid this common complication of implant surgery, it is preferable to use new biomaterials with antibacterial properties. Therefore, the aim of this work is to develop a method of combining the antibacterial properties of antibiotic-loaded poly(3-hydroxybutyrate) (PHB) nano- and micro-spheres and poly(ethylene glycol) (PEG) as an antifouling agent, with titanium (Ti), as the base material for implants, in order to obtain surfaces with antibacterial activity. The Ti surfaces were linked to both PHB particles and PEG by a covalent bond. This attachment was carried out by firstly activating the surfaces with either Oxygen plasma or Sodium hydroxide. Further functionalization of the activated surfaces with different alkoxysilanes allows the reaction with PHB particles and PEG. The study confirms that the Ti surfaces achieved the antibacterial properties by combining the antibiotic-loaded PHB spheres, and PEG as an antifouling agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号