首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在不同电流密度下制备了铈掺杂ZL108合金的微弧氧化膜,研究了电流密度对铈掺杂铝合金微弧氧化膜性能的影响。利用扫描电镜观察微弧氧化膜的表面形貌,采用能谱仪分析膜层元素,利用极化曲线评定耐蚀性,并对微弧氧化膜的厚度、表面硬度进行了测定。结果表明,随着电流密度的增加,氧化电压、膜层厚度均增加,而硬度先上升后降低;微弧氧化膜表面微孔数量及尺寸不断增加,最后出现块状凸起并有裂纹产生。Ce元素在微弧氧化膜表面的分布随电流密度增加而不断均匀。当电流密度为10 A/dm~2时Ce含量最高,此时微弧氧化膜耐蚀性最好。  相似文献   

2.
梅雨堃  王平 《热加工工艺》2015,(6):129-131,135
研究了电流密度对锂改性ZL108铝合金微弧氧化膜性能的影响规律。分析了微弧氧化电压规律;通过SEM观察了氧化膜表面微观形貌;检测了氧化膜硬度、厚度。结果表明,随电流密度增加,氧化电压升高;氧化膜表面微孔数量减少,孔径增大;氧化膜厚度先升高后保持稳定;膜层硬度升高;当电流密度为30 A/dm2时,获得的氧化膜具备较好的综合性能。  相似文献   

3.
在不同电流密度下制备了ZL108 Na2WO4改性微弧氧化膜,研究了电流密度对Na2WO4改性微弧氧化膜特性的影响。利用扫描电镜(SEM)观察氧化膜表面形貌,能谱仪(EDS)、X射线衍射仪(XRD)以及X射线光电子能谱(XPS)分别测试了氧化膜截面元素分布、相组成以及W的化合价,极化曲线测试了耐蚀性。结果表明,随电流密度增大,微弧氧化膜由致密变为多孔,微孔数量增加、尺寸变大,膜层增厚。膜层中W、O含量增加,Al含量下降。微弧氧化膜由γ-Al2O3、Al和Si 3个相组成,W元素在膜中主要以WO3形式存在。微弧氧化膜的耐蚀性随电流密度增加而提高。  相似文献   

4.
在含石墨微粒的硅酸钠电解液中,采用不同的电流密度(1, 5, 10,15和20 A/dm~2)在ZL108铝合金上制备了微弧氧化(MAO)膜层。利用SEM、EDS、XRD、涡流测厚仪和显微硬度计对微弧氧化膜层的特性进行了研究。结果表明,随着电流密度的增加,微弧氧化膜层的增厚导致氧化电压增加。微弧氧化膜表面多孔,微孔的直径和烧结盘尺寸逐渐增加。膜层表面C、Si元素的相对含量随电流密度增加而增多,C元素在膜层表面呈均匀分布,膜层截面C元素主要集中在膜层外侧。膜层主要由SiC, SiO_2,θ-Al_2O_3,α-Al_2O_3组成, SiC相来源于石墨与SiO_2反应。随电流密度增大,膜层硬度增加。膜层耐蚀性呈先升高后降低的趋势,并在5 A/dm~2时膜层腐蚀速率最低。  相似文献   

5.
采用自行研制的MAO-100kW型微弧氧化设备,对ZL108压铸铝合金在中性溶液(pH=6.5~8.0)中的微弧氧化处理工艺进行研究。探讨了中性溶液对该合金微弧氧化过程的影响;处理电压对该合金微弧氧化陶瓷层生长特性以及陶瓷层表面粗糙度的影响规律。结果表明:采用中性溶液能够在ZL108压铸铝合金表面制备出致密光滑、硬度高的微弧氧化陶瓷层;在一定范围内,中性溶液中柠檬酸钠的浓度越高,其表面产生微区等离子体放电的起始电压越低;陶瓷层的厚度和表面粗糙度随着电压值的上升而增加。  相似文献   

6.
在含石墨微粒的硅酸钠电解液中,采用不同的电流密度(1, 5, 10,15和20 A/dm2)在ZL108铝合金上制备了微弧氧化(MAO)膜层。利用SEM、EDS、XRD、涡流测厚仪和显微硬度计对微弧氧化膜层的特性进行了研究。结果表明,随着电流密度的增加,微弧氧化膜层的增厚导致氧化电压增加。微弧氧化膜表面多孔,微孔的直径和烧结盘尺寸逐渐增加。膜层表面C、Si元素的相对含量随电流密度增加而增多,C元素在膜层表面呈均匀分布,膜层截面C元素主要集中在膜层外侧。膜层主要由SiC, SiO2, θ-Al2O3, α-Al2O3组成, SiC相来源于石墨与SiO2反应。随电流密度增大,膜层硬度增加。膜层耐蚀性呈先升高后降低的趋势,并在5A/dm2时膜层腐蚀速率最低。  相似文献   

7.
电参数对AZ91D镁合金微弧氧化过程和膜层的影响   总被引:1,自引:0,他引:1  
在硅铝复合电解液中,采用不同的电参数在AZ91D镁合金表面制备微弧氧化膜。利用扫描电镜(SEM)观察了膜层表面微观形貌;通过膜层测厚仪测量了氧化膜的厚度。结果表明,随着电流密度、占空比或者氧化时间的增大,膜层的不均匀程度都逐渐增大,表面放电孔洞尺寸变大,数量减少;电流密度大于10A/dm2或氧化时间超过15min时,微弧氧化过程会出现熄弧阶段;膜层厚度随着电流密度的增加而呈现近似线性增加后趋于稳定的变化趋势;而随着占空比或者氧化时间的延长,膜层厚度则逐渐增大。  相似文献   

8.
在NH4VO3添加量为1 g/L的Na2Si O3溶液中对ZL108铝合金进行了微弧氧化处理,研究了电流密度对NH4VO3改性微弧氧化膜特性的影响。利用扫描电镜观察了微弧氧化膜形貌,用能谱仪分析了膜层V、O、Al元素分布,用X射线衍射仪分析了膜层的相组成,测试了膜层厚度、硬度和微弧氧化电压变化曲线。结果表明,随电流的增加微弧氧化电压快速升高,导致微弧氧化膜厚度和硬度增加,改变了微弧氧化膜形貌、膜层元素分布及微弧氧化膜相组成。  相似文献   

9.
微弧氧化电流密度对ZL205A铝合金氧化膜层性能的影响   总被引:1,自引:1,他引:0  
采用微弧氧化技术,以ZL205A铝合金为基材,固定其它条件不变,只改变电流密度,制备多种氧化膜层,研究了电流密度对膜层的厚度、表面形貌、元素成分、相结构及耐磨性能的影响.结果表明:随电流密度的升高,膜层总厚度和致密层厚度均呈线性增长,同时膜层中的微孔直径增大,但数量减少;膜层的主要成分为Al-Si-O相,其含量随电流密度的增加而增加;氧化膜的磨损机制为磨粒磨损,电流密度对其摩擦因数的影响不大,但其耐磨性能随电流密度的增加而下降,这与外层疏松层的作用有关.  相似文献   

10.
目的 研究恒流模式下阴极电流密度对6061铝合金在含Na2WO4的电解液中制备的微弧氧化膜厚度、形貌、相组成及耐磨性能的影响。方法 固定阳极电流密度为5.0 A/dm2,阴极电流密度分别为0、1.25、2.5、3.75、5.0 A/dm2,对6061铝合金进行微弧氧化40 min。用涡流测厚仪测量了氧化膜的厚度,用扫描电镜观察了微弧氧化膜的表面形貌和截面形貌,用能谱分析仪分析了氧化膜的表面成分,用X射线衍射分析仪分析了微弧氧化膜的相组成,用往复式摩擦磨损试验机测试了氧化膜的耐磨性能。结果 随着阴极电流密度的增加,氧化膜内的W含量逐渐减少,氧化膜颜色逐渐变浅,氧化膜厚度逐渐增加。微弧氧化膜的主要组成相为α-Al2O3和γ-Al2O3。当阴极电流密度从0 A/dm2增加到3.75 A/dm2时,氧化膜内孔洞的数量和尺寸逐渐减少,孔洞到氧化膜/基体界面的距离逐渐增加,氧化膜的耐磨性能逐渐提升。当阴极电流密度为3.75 A/dm2时,氧化膜的磨损率最低,仅为1.07×10‒4 mm3/(N.m)。但阴极电流密度增加到5.0 A/dm2时,氧化膜表层出现孔洞和剥落,耐磨性能下降。结论 阴极电流的加入有助于增加6061铝合金微弧氧化膜的厚度,提高氧化膜的致密性和耐磨性能,但过高的阴极电流会导致氧化膜表层出现孔洞,降低耐磨性能。  相似文献   

11.
在含有磷酸钠和钼酸钠的电解液中采用恒流模式对5083铝合金进行微弧氧化。研究了电流密度对氧化电压、膜层生长速率的影响;采用扫描电镜和能谱对氧化膜的表面形貌和成分进行了分析;采用电化学极化曲线测试了氧化膜的耐腐蚀性能。结果表明:在恒电流微弧氧化过程中,氧化电压出现直线快速增长和平稳增长两个阶段,且随着电流密度的增加电压逐渐增大;随着电流密度的增大,氧化膜厚度增加,其表面微弧放电产生的微孔数量逐渐减少,而"火山堆积"状形貌特征越来越明显,电流密度过大氧化膜出现局部剥落,其对氧化膜成分影响不明显;微弧氧化陶瓷膜提高了铝合金基体的耐腐蚀性能,当电流密度为7.5 A/dm2时,微弧氧化膜的自腐蚀电流为1.9×10-8A/cm2,比铝合金基体降低了1个数量级,表现出良好的耐腐蚀性能。  相似文献   

12.
压铸铝合金中性溶液微弧氧化工艺研究   总被引:1,自引:0,他引:1  
郝建民  李波  陈宏 《热加工工艺》2006,35(20):58-60
采用自行研制的MAO-100kW型微弧氧化设备,对ZL108压铸铝合金在中性溶液(pH=6.5~8.0)中的微弧氧化处理工艺进行研究。探讨了中性溶液对该合金微弧氧化过程的影响;处理电压对该合金微弧氧化陶瓷层生长特性以及陶瓷层表面粗糙度的影响规律。结果表明:采用中性溶液能够在ZL108压铸铝合金表面制备出致密光滑、硬度高的做弧氧化陶瓷层;在一定范围内,中性溶液中柠檬酸钠的浓度越高,其表面产生微区等离子体放电的起始电压越低:陶瓷层的厚度和表面粗糙度随着电压值的上升而增加。  相似文献   

13.
马晋 《热加工工艺》2014,(12):142-145
采用交流电源,通过不同的初始电流密度对2A12铝合金材料表面进行微弧氧化试验,研究电流密度对陶瓷氧化膜生长的影响。结果表明,电流密度对微弧氧化陶瓷膜的生长产生重要影响,电流密度过低,微弧放电无法为氧化陶瓷膜的生长提供能量,导致陶瓷氧化膜生长停止;适当增加电流密度能够促进氧化陶瓷膜的生长,获得质量较好的氧化膜层;过高的电流密度对氧化陶瓷膜质量产生不利影响。  相似文献   

14.
镁合金在硅酸盐体系中微弧氧化膜层的性能研究   总被引:6,自引:1,他引:6  
利用交流微弧氧化装置对AZ91D镁合金在硅酸盐体系中进行了微弧氧化处理,并通过扫描电镜、电化学测试技术和表面性能测试仪等研究了氧化时间和电流密度对微弧氧化膜层表面形貌、厚度、耐蚀性、摩擦磨损性能和结合力的影响.结果表明:随氧化时间和电流密度的增大,镁合金微弧氧化膜层中微孔的数量减少,但微孔的直径和表面粗糙度增大.膜层厚度随氧化时间和电流密度的增加呈线性增大,但与基体的结合力明显降低.镁合金微弧氧化膜层的耐蚀性和耐磨性随氧化时间和电流密度的增大呈先增大后减小的趋势.镁合金在硅酸盐体系中微弧氧化处理的最佳工艺为氧化时间40min、电流密度0.20A/cm2.  相似文献   

15.
电参数对锆材微弧氧化膜层厚度的影响   总被引:1,自引:0,他引:1  
利用微弧氧化技术在锆材表面原位生成微弧氧化膜层。研究电压、占空比、频率和电流密度对锆材微弧氧化膜层厚度的影响,并利用单因素方差分析法,分析各电参数对膜厚影响的显著性。结果表明:在试验范围内,随着电压的升高、占空比的增大、频率的减小或电流密度的增大,锆材微弧氧化膜层厚度增加;各电参数对微弧氧化膜层厚度影响的主次顺序为:电压和电流密度>占空比>频率,其中频率对膜层厚度无明显影响。  相似文献   

16.
采用微弧氧化技术在1050纯铝表面制备陶瓷膜,分析了不同制备参数对应的电压与时间曲线.表征了陶瓷氧化膜的厚度、微观形貌,膜层结构和成分;评定了陶瓷氧化膜在NaCI溶液中耐腐蚀性能.随着电流密度的增大,陶瓷膜的厚度呈线性快速增加.微弧氧化后试样具有更高的腐蚀电位和更低的腐蚀电流密度,并且发现铝合金的维钝电流密度可以从0.1A/cm~2降低为10~-7A/cm~2,低的腐蚀电流密度可能是由于膜的厚度、致密度等决定.  相似文献   

17.
为了研究ZL108铝合金微弧氧化膜的Na2Mo O4改性机理,在添加5种不同浓度的Na2MoO4溶液中对其进行微弧氧化处理。利用扫描电镜(SEM)观察微弧氧化膜表面形貌,用能谱仪(EDS)分析截面Mo、O元素含量,用XPS测定Mo、O元素的价态,用X射线衍射仪(XRD)分析相组成,采用极化曲线评定耐蚀性。结果表明,微弧氧化电压随着Na2MoO4浓度的增加而下降。微弧放电区温度高于1823.84 K时,Mo O2-4开始转变形成MoO2,抑制了微弧氧化膜表面多孔层的形成,提高了膜层的致密性、厚度和耐蚀性。浓度的改变对相组成影响较小。  相似文献   

18.
采用微弧氧化技术,在电解质溶液中添加蛇纹石微纳米颗粒,在ZL109铝合金表面原位生长陶瓷层,制备蛇纹石复合微弧氧化膜层。采用正交试验法,通过测定膜层厚度、表面粗糙度和膜层中蛇纹石含量,以及扫描电镜(SEM)和能谱(EDS)分析,对制备蛇纹石复合微弧氧化膜层的工艺参数进行优化研究。结果表明:双向恒压模式下制得的微弧氧化膜层表面微孔孔径较小,粗糙度较低,但膜中的蛇纹石含量较低;单向恒压和单向恒流模式下制得的微弧氧化膜层中蛇纹石含量较高,且单向恒流模式下制得的微弧氧化膜层表面裂纹明显减少;微弧氧化膜层中的蛇纹石含量、膜层厚度及粗糙度均随电流的增加而增加,随频率的增加而减少,随电解液中蛇纹石微纳米颗粒浓度的增加而增加;制备蛇纹石复合微弧氧化膜层优化后的工艺参数为:单向恒流模式,正向电流8 A,频率500 Hz,电解液中的蛇纹石微纳米颗粒浓度10 g/L。  相似文献   

19.
负向电流密度对镁合金微弧氧化电压及陶瓷膜的影响   总被引:1,自引:0,他引:1  
以恒流模式在含有硅酸钠、氟化钾、甘油、氢氧化钾的电解液中对AM50镁合金进行微弧氧化。研究了正向电流密度恒定时,负向电流密度对正向电压及陶瓷膜表面形貌、显微硬度和厚度的影响。结果表明,不同负向电流密度对应的正向电压随时间的变化都呈先快速增长后趋于稳定的变化趋势,而随负向电流密度的增大,不同负向电流密度对应的正向电压(同一时刻)呈先增加后逐渐降低的变化趋势;随负向电流密度的增大,氧化膜表面微孔数量先减少后增加,而陶瓷膜表面微孔孔径变化不大,都在1~5μm范围内;提高负向电流密度有利于增加微弧氧化陶瓷膜的硬度与厚度。  相似文献   

20.
在磷酸盐体系中采用恒压微弧氧化工艺对Ti6Al4V(TC4)合金进行微弧氧化,研究了不同氧化时间对微弧氧化膜层的表面形貌、硬度、粗糙度以及物相生成的影响,并对不同氧化时间的膜层耐腐蚀性能进行了测试。结果表明:随着微弧氧化时间的延长,氧化膜表面微孔径增大,膜层厚度与表面硬度值先增加后又降低,膜层由金红石、锐钛矿及钙磷化合物组成,且主晶相为钙磷化合物,金红石及钙磷化合物含量均随微弧氧化时间的延长而增加;微弧氧化膜层表面Ca/P摩尔比值为1.56,接近人体羟基磷灰石比值,O/Ti原子比值为2.0,膜层表面主要组成为TiO2;微弧氧化膜层腐蚀电位逐渐减小,腐蚀电流逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号