首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary: A phenolic group containing hyperbranched polyester (HBP) was synthesized and employed as chain transfer agent in cationic photopolymerization of a biscycloaliphatic epoxy monomer ( CE ). The epoxy group conversion increases by increasing the amount of HBP in the photocurable resin, due to a chain transfer reaction involving the phenolic‐OH groups. HBP acts as a plasticizer inducing decrease of the Tg values together with an increase of the toughness properties. Meanwhile gel content increases together with the E′ values. By increasing the amount of HBP in the photocurable resin an increase of the density is evident indicating a decrease of free volume. Therefore an improvement of the gas barrier properties might be expected; at the same time an increase of the thermal stability is evident.

  相似文献   


2.
Advanced multifunctional coatings were prepared by UV curing of epoxy based formulations containing hyperbranched polymers (HBP) and an epoxy functionalized alkoxysilane additive. The addition of HBP to the UV curable epoxy resin induced an important flexibilization of the glassy epoxy network with an increase in toughness of the cured polymeric coatings. Adding the functionalized alkoxysilane into the UV curable formulations, as inorganic precursor of silica phase, an improvement on surface hardness was obtained without strongly affecting the flexibilization and the toughness achieved by the addition of the HBP additive. The increase on surface hardness was accompanied with an increase in scratch resistance and modulus. Advanced scratch resistant and tough nanocomposite epoxy coatings were obtained by properly selecting the components of the formulation.  相似文献   

3.
超支化聚合物改性环氧树脂的研究   总被引:2,自引:0,他引:2  
朱超  林丽娟  戚豹 《化学与粘合》2007,29(4):261-264
超支化聚合物是一类很有前景的热固性树脂改性材料.以三羟甲基丙烷(TMP)和二羟甲基丙酸(DMPA)为反应单体,采用一步法合成了超支化聚合物,研究了超支化聚合物用量对双酚A环氧树脂的力学性能影响,并利用差示扫描量热分析(DSC)、热失重分析(TGA)研究了固化物的热性能.结果表明,加入15%的超支化聚合物后,环氧树脂的冲击强度和弯曲强度分别提高了153%,19.3%,环氧树脂的耐热性能也有一定程度的提高.表明该超支化聚合物是一类潜在的环氧树脂改性剂.  相似文献   

4.
This paper reports on the use of an epoxidized hyperbranched polymer (HBP) as an additive to an epoxy anhydride resin system. The hyperbranched polymer used was an aliphatic polyester with a molecular weight of around 10 500 g mol?1. The epoxy resin mixture used was a combination of a difunctional diglycidyl ether of bisphenol A (DGEBA) epoxy and an epoxy novolac, and was cured with a catalysed anhydride curing agent. It has been shown that, at a concentration range of 0 to 20 wt% addition, the HBP is able to almost double the fracture toughness, with little evidence of any deleterious effects upon processing and the durability of the cured resin system. The flexural modulus and stress, however, were found to both decrease by about 30% as a result of HBP addition while the Tg was found to decrease by about 10%. The processability of the uncured resin systems has been investigated by using rheological and calorimetric techniques and it was found that the processability window, as determined by the gel time and viscosity changes, was relatively unaffected by HBP addition. The fracture surfaces were evaluated by using scanning electron microscopy which showed that the unique structure of the HBP facilitates an enhanced interaction with the polymer matrix to achieve excellent toughness enhancement of the polymer matrix. The durability of the epoxy network has been investigated via thermogravimetric analysis (TGA) and solvent uptake, and the HBP has been shown to have little systematic deleterious effect upon the degradation temperatures and the total amount of solvent absorbed. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
In this work, the phase separation of an epoxy‐functionalized hyperbranched polymer (HBP) in a blend with a conventional epoxy resin is examined. Morphology development with the advancement of curing reaction was investigated by hot‐stage polarized optical microscope, where it was found that HBP is miscible in epoxy resin solvent at 120°C and undergoes phase separation during the curing reaction, leading to a two‐phase microstructure which maintains a dispersed morphology up to 20 wt % HBP. The degree of phase separation and morphology were also investigated using differential scanning calorimetry, and the resultant microstructure was confirmed by atomic force microscopy. The epoxy/HBP blends were characterized by positron annihilation lifetime spectroscopy for their free volume characteristics where behavior typical of miscible blends was seen, likely due to chemical bonding between the two phases. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
A new hyperbranched polymer (HBP) with a flexible aromatic skeleton and terminal epoxy groups was synthesized to improve the toughness of diglycidyl ether of bisphenol A. The HBP was characterized using nuclear magnetic resonance, Fourier transfer infrared spectroscopy and gel permeation chromatography. The effect of HBP on the thermomechanical and mechanical properties of modified epoxy systems was studied. For evaluating the efficiency of the modified epoxy systems, composite samples using glass fiber cloth were molded and tested. Using dynamic mechanical analysis, a slight reduction in glass transition temperature (Tg) with increasing HBP content was observed. Analysis of fracture surfaces revealed a possible effect of HBP as a toughener and showed no phase separation in the modified resin systems. The results showed that the addition of 15 phr HBP maximized the toughness of the modified resin systems with 215 and 40% increases in impact and flexural strengths, respectively. Tg and heat resistance of cured modified resin systems decreased slightly with an increase in HBP content and, at 15 phr HBP, only a 2.6% decrease in thermomechanical properties was observed. Meanwhile, a molded composite with HBP showed improved mechanical properties and retention rate at 150 °C as compared to that made with neat resin. © 2015 Society of Chemical Industry  相似文献   

7.
以偏苯三酸酐、环氧氯丙烷及甲基丙烯酸缩水甘油酯为原料合成了超支化聚酯(HBP),再通过超支化聚合物的羧基与环氧树脂环氧基的反应得到环氧改性超支化聚合物;用GPC1、H-NMR、DSC、TGA表征了环氧改性超支化聚合物的结构和热性能;比较了不同环氧树脂用量改性前后树脂的光反应活性以及光固化涂层的耐擦洗性和硬度,测定了凝胶率-曝光时间曲线;以环氧改性超支化聚合物配制了光刻胶,在混合光源以及接触曝光的条件下,分辨率达到2~3μm,且图像十分清晰,断面整齐。环氧树脂用量为HBP羧基物质量的70%左右时,改性的超支化聚酯的光固化活性有明显提高,力学性能得到明显改进。  相似文献   

8.
D. Foix  A. Serra 《Polymer》2011,52(15):3269-152
A new hyperbranched polymer (HBP) was obtained via an iterative synthetic procedure that consists of esterification and thiol-ene click reaction. This polymer was used as a latent multifunctional macroinitiator for the dual curing of a commercially available cycloaliphatic epoxy resin and this process was studied by photo-DSC and FTIR. The presence of thioether groups in the HBP structure leads, by photoirradiation, to the formation of sulfonium salts, which are thermal cationic initiating species. The materials obtained were characterized by DMTA, TGA, gel content and FESEM. By means of the last technique domains of HBP as a second phase within the epoxy matrix were observed.  相似文献   

9.
Mixtures of epoxy resins in the presence of epoxy hyperbranched polymers (HBP), in the range of 5–15 wt%, were investigated in the cationic photocuring process. No significant differences in rate of polymerization or final epoxy groups conversion were observed. At low concentration, HBP acts as plasticizer and causes a decrease of the glass transition temperature of the epoxy matrix and of the E′ value. At higher concentration (about 15 wt%), two Tg values are evident, indicating a biphasic structure of the system. The SEM analysis of the fracture surface of the samples confirms a particulate structure with separate HBP domains interconnected to the epoxy matrix. In all the samples investigated, a clear increase of the impact resistance was observed, resulting either from the plasticization effect or from the particulate structure induced by the presence of the HBP resin.  相似文献   

10.
This article describes the use of hyperbranched polyester oligomers (HBPs) as modifiers for epoxy thermosets. The effect of HBP molar mass, end group, and loading on prepolymer viscosity, thermoset fracture toughness, Tg, and high‐temperature dynamic storage modulus (E′) were measured. The HBP molar mass was systematically increased from nominal values of ∼ 1750 g mol (Generation 2, or G2) up to ∼ 14,000 g mol (Generation 5, or G5), which corresponds from a low of two layers of monomer up to a maximum of five layers of monomer around the central core. Toughness increased only modestly with the molar mass of the HBP. At 7% loading in the epoxy thermoset, the G5 HBP increased toughness by ∼ 60% over the untoughened control. Toughness increased to 82% above the untoughened control at a loading of 19% G5 HBP, but the toughness decreased at 28% HBP loading. The Tg and E′ were influenced by the HBP modifier, but the effect was not systematic and may have been due to competing effects of HBP molar mass and end group. The effect of the architecture of the thermoplastic modifier was investigated by introducing a linear aliphatic polyester (∼ 5400 g mol) with a repeat unit structure, which was similar to that of the HBP. At the molecular weight range investigated, neither the prepolymer viscosity nor the thermoset toughness of the HBP–epoxy was significantly different from that of the linear polyester in epoxy. Preliminary results are presented showing the effect of thermoplastic molecular weight and architecture on morphology. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 151–163, 1999  相似文献   

11.
超支化聚酰胺酯增韧增强环氧树脂的性能研究   总被引:2,自引:0,他引:2  
以四氢甲基苯酐(MeTHPA)为固化剂,超支化聚酰胺酯(HBP)为增韧剂,制备了HBP/MeTHPA/环氧树脂(EP)固化体系。采用红外光谱(FT-IR)对HBP/MeTHPA/EP复合体系的固化机理进行了研究,并讨论了不同含量的HBP对固化体系热力学性能的影响。实验结果表明,HBP的加入会促进体系的固化反应;当w(HBP)=10%时力学性能最佳,冲击强度和拉伸强度分别增加了142.71%和34.44%,而玻璃化转变温度(Tg)有所下降,储能模量在玻璃态时均明显提高。  相似文献   

12.
The use of hydroxyl‐functionalized hyperbranched polymers (HBPs) (Boltorn® H20, H30 and H40) was investigated with respect to a UV‐cured epoxy system. Their presence induced an increase of the final epoxy conversion, which was interpreted on the basis of a chain‐transfer reaction. A decrease of the Tg values in the photocured films was observed when the amount of HBP additive in the photocurable formulation was increased. When the amount of HBP in the photocurable resin was increased, the density of photocured films increased, indicating a decrease on the free volume. Moreover, a clear increase in toughness was observed and attributed to the plasticization effect induced by the presence of HBP. This effect is particularly interesting for epoxy thermosets, which are characterized by good mechanical properties, although they are brittle and fragile. By increasing the toughness properties of these photocured resins it may be possible to broad their applications. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
An allyl terminated hyperbranched polyester (HBP) was added to an epoxy formulation containing a trithiol compound to perform a thiol-ene click reaction. By this procedure a flexible thioether network was formed. The photoirradiation of the reactive mixture, which contained a cationic photoinitiator, converted the thioether network in a multifunctional thermal macroinitiator, capable to initiate the cure of the cycloaliphatic epoxy resin(CE) in a second thermal stage. Depending on the proportion of HBP, thermal or photocuring of the epoxy resin took place in different extent, leading to networks with different structures. The photocuring procedure was followed by FTIR and the thermal second stage by DSC. The materials obtained were characterized by DMTA, TGA and SEM. The addition of HBP-Allyl and the trithiol to the formulation allowed increasing the Tg on comparison with the neat epoxy thermoset. The system proposed constitutes a new two-stage dual photo-thermal curing procedure for cycloaliphatic epoxy resins with a thermal latent character.  相似文献   

14.
The cationic polymerization of DGEBA with two hyperbranched polymers (HBPs) with epoxy or vinyl end groups, using ytterbium triflate as initiator, has been studied. These HBPs have been obtained from commercial Boltorn H30 of which terminal hydroxyl groups have been replaced with long aliphatic ester chains having vinyl or epoxy end groups. Differences between the HBPs added as modifiers are observed with respect to the curing kinetics, network development, properties and morphology of the cured materials. While terminal epoxy groups ease the solubility of the HBP in DGEBA and allows its covalent incorporation into the network structure, the HBP with vinyl terminal groups is only miscible at high temperature and phase-separates during curing. As a consequence, morphology and thermal–mechanical properties are strongly dependent on the HBP employed.  相似文献   

15.
Summary: An alkyl‐functionalized hyperbranched polymer, HBP(OH)–C16, was synthesized by partial modification with fatty acid of an aromatic‐aliphatic OH‐terminated hyperbranched polyester HBP? OH. This product was used as additive in the cationic photopolymerization of an epoxy resin. The alkyl‐modified polyester takes part in the photopolymerization process thanks to the residual OH groups by means of chain‐transfer reactions. An increase of the epoxy conversion is observed by increasing the amount of the HBP additive in the photocurable resin with a modification of the bulk properties of the final ultraviolet‐cured films. The presence of HBP(OH)–C16 induces an increase in glass transition temperature, thermal stability, and solvent resistance. Moreover the surface properties of the films are modified achieving highly hydrophobic surfaces in the presence of even very low amounts of HBP(OH)–C16.

Structure of HBP–C16.  相似文献   


16.
Hyperbranched aromatic polyamide (HBP) was grafted successfully onto carbon fibers (CFs) on the basis of solution polymerization to enhance the interfacial adhesion strength of CF-reinforced epoxy resin composites. The microstructure and interfacial properties of the CFs before and after decoration were researched. The results indicate that HBP was deposited uniformly onto the CFs with γ-aminopropyl triethoxysilane as the bridging agent. The active groups, roughness, and surface energy of the modified fiber [hyperbranched aromatic polyamide grafted carbon fiber (CF–HBP)] increased visibly in comparison with those of the untreated CFs. The CF–HBP composites revealed simultaneous remarkable enhancements (65.3, 34.3, and 84.8%) in their interfacial shear strength, flexural strength, and modulus, respectively; this was attributed to the improvement in the fiber–epoxy interface through enhanced chemical interactions, mechanical interlocking, and wettability. These agreed with the scanning electron microscopy observations from the fracture surface morphologies of the composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47232.  相似文献   

17.
New epoxy thermosets with improved flexibility were prepared by chemical modification of bisphenol A diglycidyl ether (DGEBA) with hyperbranched polymers (HBPs). Hydroxyl‐ended hyperbranched polyesters were modified by blocking part of the hydroxyl groups with trimethylsilyl or benzoyl groups. The curing of mixtures of DGEBA with various proportions of two modified HBPs using ytterbium triflate as cationic initiator was investigated using differential scanning calorimetry and thermomechanical analysis. The characterization of these materials was performed using several thermal analysis techniques and their morphology was investigated using electron microscopy. High proportions of HBPs reduced the glass transition temperature and the relaxed storage modulus but barely affected gelation. The overall curing shrinkage was controlled by the content of hydroxyl groups and by the changes of HBP molecular interactions during curing. The results indicated that the relative proportion and type of terminal groups play a role in the evolution of the curing and the properties of the thermosets. Hydroxyl groups promoted the covalent incorporation of the HBP to the network via hydroxyl‐induced chain‐transfer reactions, whereas benzoyl groups promoted phase separation. Formulations containing HBP blocked with benzoyl groups showed two phases connected through covalent linkages between the HBP‐rich phase and the epoxy matrix. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Summary: Different fluorinated hyperbranched polymers (HBP) were synthesized starting from fluorinated oxetanes and employed as additives in cationic photopolymerization of epoxy monomers. As previously observed for other hydroxyl containing HBP, they interact with the polymeric carbocation through a chain transfer mechanism inducing an increase in the final epoxy conversion. High gel content values (>96%) for the photocured films confirm that the HBP additive is tightly crosslinked to the polymeric network. In the presence of this fluorine‐containing HBP it is possible to influence the bulk properties, as well as, the surface properties. The fluorinated HBP tends to migrate to the surface inducing an increase of hydrophobicity.

The hyperbranched polymer used in this work.  相似文献   


19.
An organo‐modified Boehmite (o‐Boehmite) was used to prepare nanocomposite UV‐curing coatings, based on a cycloaliphatic epoxy resin (3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate). A hyperbranched polymer (HBP) based on highly branched polyester, was also added to the resin, with the aim to modify its reactivity, such as a possible route to increase the toughness of the resin. Different amounts of the nanofiller and the HBP, ranging from 5 up to 20 wt % of resin, were dispersed into the resin in the presence of triarylsulfonium hexafluoroantimonate, as a photoinitiator for the UV curing of the resin. The rheological behavior of the formulations produced was studied as function of the shear rate and of the content of each filler using a cone and plate rheometer. A general increase in viscosity was observed with increasing the volume fraction of each filler and a moderate pseudoplastic behavior was observed when o‐Boehmite filler was added. A non‐Newtonian behavior was observed with the incorporation of the HBP. The viscosity of the epoxy/boehmite resin mixtures was analyzed as function of the nanofiller volume fraction. In the case of epoxy/hyperbranched resin mixtures, the Cross equation was used to predict the viscosity of each formulation as a function of the shear rate and an appropriate relationship to predict the viscosity of each formulation as a function of the filler volume fraction, was determined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Epoxy/clay nanocomposites have been prepared using an diglycidyl ether of bisphenol A (DGEBA) epoxy and its blend with an epoxy functionalized hyperbranched polymer (HBP). The formation of nanocomposites was confirmed by a wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) analysis. The mechanical and dynamic mechanical properties of the nanocomposites were evaluated and compared with the corresponding matrix. The improvement in impact properties in blend and nanocomposites was explained in terms of fracture surface analysis by scanning electron microscopy (SEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号