首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present a parallel recognition algorithm for bipartite-permutation graphs. The algorithm can be executed in O(log n) time on the CRCW PRAM if O(n3/log n) processors are used, or O(log2 n) time on the CREW PRAM if O(n3/log2 n) processors are used. Chen and Yesha (1993) have presented another CRCW PRAM algorithm that takes O(log2n) time if O(n 3) processors are used. Compared with Chen and Yesha's algorithm, our algorithm requires either less time and fewer processors on the same machine model, or fewer processors on a weaker machine model. Our algorithm can also be applied to determine if two bipartite-permutation graphs are isomorphic  相似文献   

2.
Recurrence formulations for various problems, such as finding an optimal order of matrix multiplication, finding an optimal binary search tree, and optimal triangulation of polygons, assume a similar form. A. Gibbons and W. Rytter (1988) gave a CREW PRAM algorithm to solve such dynamic programming problems. The algorithm uses O(n6/log n) processors and runs in O(log2 n) time. In this article, a modified algorithm is presented that reduces the processor requirement to O(n6/log 5n) while maintaining the same time complexity of O(log2 n)  相似文献   

3.
In the literature, there are quite a few sequential and parallel algorithms for solving problems on distance-hereditary graphs. With an n-vertex and m-edge distance-hereditary graph G, we show that the efficient domination problem on G can be solved in O(log/sup 2/ n) time using O(n + m) processors on a CREW PRAM. Moreover, if a binary tree representation of G is given, the problem can be optimally solved in O(log n) time using O(n/log n) processors on an EREW PRAM.  相似文献   

4.
一种优化的并行汉字/字符串匹配算法   总被引:1,自引:1,他引:0  
字符串检索指在一个文本Text=t1…tn中找出一个字符串Pat=p1…pm的所有出现。本文给出了在CREW/CRCW PRAM机器模型上并行检索汉字/字符串的算法, 它使用n/m。个处理机, 预处理时间为O(m+|∑|, 并行执行时间为O(m)。  相似文献   

5.
In this paper we consider the problem of computing the connected components of the complement of a given graph. We describe a simple sequential algorithm for this problem, which works on the input graph and not on its complement, and which for a graph on n vertices and m edges runs in optimal O(n+m) time. Moreover, unlike previous linear co-connectivity algorithms, this algorithm admits efficient parallelization, leading to an optimal O(log n)-time and O((n+m)log n)-processor algorithm on the EREW PRAM model of computation. It is worth noting that, for the related problem of computing the connected components of a graph, no optimal deterministic parallel algorithm is currently available. The co-connectivity algorithms find applications in a number of problems. In fact, we also include a parallel recognition algorithm for weakly triangulated graphs, which takes advantage of the parallel co-connectivity algorithm and achieves an O(log2 n) time complexity using O((n+m2) log n) processors on the EREW PRAM model of computation.  相似文献   

6.
We consider the problem of generating random permutations with uniform distribution. That is, we require that for an arbitrary permutation π of n elements, with probability 1/n! the machine halts with the i th output cell containing π(i) , for 1 ≤ i ≤ n . We study this problem on two models of parallel computations: the CREW PRAM and the EREW PRAM. The main result of the paper is an algorithm for generating random permutations that runs in O(log log n) time and uses O(n 1+o(1) ) processors on the CREW PRAM. This is the first o(log n) -time CREW PRAM algorithm for this problem. On the EREW PRAM we present a simple algorithm that generates a random permutation in time O(log n) using n processors and O(n) space. This algorithm outperforms each of the previously known algorithms for the exclusive write PRAMs. The common and novel feature of both our algorithms is first to design a suitable random switching network generating a permutation and then to simulate this network on the PRAM model in a fast way. Received November 1996; revised March 1997.  相似文献   

7.
In the literature, there are quite a few sequential and parallel algorithms to solve problems on distance-hereditary graphs. Two well-known classes of graphs, which contain trees and cographs, belong to distance-hereditary graphs. We consider the vertex-coloring problem on distance-hereditary graphs. Let T/sub d/(|V|, |E|) and P/sub d/d(|V|, |E|) denote the time and processor complexities, respectively, required to construct a decomposition tree representation of a distance-hereditary graph G=(V,E) on a PRAM model M/sub d/. Our algorithm runs in O(T/sub d/(|V|, |E|)+log|V|) time using O(P/sub d/(|V|, |E|)+|V|/log|V|) processors on M/sub d/. The best known result for constructing a decomposition tree needs O(log/sup 2/ |V|) time using O(|V|+|E|) processors on a CREW PRAM. If a decomposition tree is provided as input, we solve the problem in O(log |V|) time using O(|V|/log |V|) processors on an EREW PRAM. To the best of our knowledge, there is no parallel algorithm for this problem on distance-hereditary graphs.  相似文献   

8.
Given a graph G=(V, E) with n vertices and m edges, the k-connectivity of G denotes either the k-edge connectivity or the k-vertex connectivity of G. In this paper, we deal with the fully dynamic maintenance of k-connectivity of G in the parallel setting for k=2, 3. We study the problem of maintaining k-edge/vertex connected components of a graph undergoing repeatedly dynamic updates, such as edge insertions and deletions, and answering the query of whether two vertices are included in the same k-edge/vertex connected component. Our major results are the following: (1) An NC algorithm for the 2-edge connectivity problem is proposed, which runs in O(log n log(m/n)) time using O(n3/4) processors per update and query. (2) It is shown that the biconnectivity problem can be solved in O(log2 n ) time using O(nα(2n, n)/logn) processors per update and O(1) time with a single processor per query or in O(log n logn/m) time using O(nα(2n, n)/log n) processors per update and O(logn) time using O(nα(2n, n)/logn) processors per query, where α(.,.) is the inverse of Ackermann's function. (3) An NC algorithm for the triconnectivity problem is also derived, which takes O(log n logn/m+logn log log n/α(3n, n)) time using O(nα(3n, n)/log n) processors per update and O(1) time with a single processor per query. (4) An NC algorithm for the 3-edge connectivity problem is obtained, which has the same time and processor complexities as the algorithm for the triconnectivity problem. To the best of our knowledge, the proposed algorithms are the first NC algorithms for the problems using O(n) processors in contrast to Ω(m) processors for solving them from scratch. In particular, the proposed NC algorithm for the 2-edge connectivity problem uses only O(n3/4) processors. All the proposed algorithms run on a CRCW PRAM  相似文献   

9.
By restricting weight functions to satisfy the quadrangle inequality or the inverse quadrangle inequality, significant progress has been made in developing efficient sequential algorithms for the least-weight subsequence problem [10], [9], [12], [16]. However, not much is known on the improvement of the naive parallel algorithm for the problem, which is fast but demands too many processors (i.e., it takesO(log2 n) time on a CREW PRAM with n3/logn processors). In this paper we show that if the weight function satisfies the inverse quadrangle inequality, the problem can be solved on a CREW PRAM in O(log2 n log logn) time withn/log logn processors, or in O(log2 n) time withn logn processors. Notice that the processor-time complexity of our algorithm is much closer to the almost linear-time complexity of the best-known sequential algorithm [12].  相似文献   

10.
We present a technique that can be used to obtain efficient parallel geometric algorithms in the EREW PRAM computational model. This technique enables us to solve optimally a number of geometric problems in O(log n) time using O(n/log n) EREW PRAM processors, where n is the input size of a problem. These problems include: computing the convex hull of a set of points in the plane that are given sorted, computing the convex hull of a simple polygon, computing the common intersection of half-planes whose slopes are given sorted, finding the kernel of a simple polygon, triangulating a set of points in the plane that are given sorted, triangulating monotone polygons and star-shaped polygons, and computing the all dominating neighbors of a sequence of values. PRAM algorithms for these problems were previously known to be optimal (i.e., in O(log n) time and using O(n/log n) processors) only on the CREW PRAM, which is a stronger model than the EREW PRAM  相似文献   

11.
Given a set of n intervals representing an interval graph, the problem of finding a maximum matching between pairs of disjoint (nonintersecting) intervals has been considered in the sequential model. In this paper we present parallel algorithms for computing maximum cardinality matchings among pairs of disjoint intervals in interval graphs in the EREW PRAM and hypercube models. For the general case of the problem, our algorithms compute a maximum matching in O( log 3 n) time using O(n/ log 2 n) processors on the EREW PRAM and using n processors on the hypercubes. For the case of proper interval graphs, our algorithm runs in O( log n ) time using O(n) processors if the input intervals are not given already sorted and using O(n/ log n ) processors otherwise, on the EREW PRAM. On n -processor hypercubes, our algorithm for the proper interval case takes O( log n log log n ) time for unsorted input and O( log n ) time for sorted input. Our parallel results also lead to optimal sequential algorithms for computing maximum matchings among disjoint intervals. In addition, we present an improved parallel algorithm for maximum matching between overlapping intervals in proper interval graphs. Received November 20, 1995; revised September 3, 1998.  相似文献   

12.

This paper presents an optimal sequential and an optimal parallel algorithm to compute a minimum cardinality Steiner set and a Steiner tree. The sequential algorithm takes O ( n ) time and parallel algorithm takes O (log n ) time and O ( n /log n ) processors on an EREW PRAM model.  相似文献   

13.
We present four polylog-time parallel algorithms for matching parentheses on an exclusive-read and exclusive-write (EREW) parallel random-access machine (PRAM) model. These algorithms provide new insights into the parentheses-matching problem. The first algorithm has a time complexity of O(log2 n) employing O(n/(log n)) processors for an input string containing n parentheses. Although this algorithm is not cost-optimal, it is extremely simple to implement. The remaining three algorithms, which are based on a different approach, achieve O(log n) time complexity in each case, and represent successive improvements. The second algorithm requires O(n) processors and working space, and it is comparable to the first algorithm in its ease of implementation. The third algorithm uses O(n/(log n)) processors and O(n log n) space. Thus, it is cost-optimal, but uses extra space compared to the standard stack-based sequential algorithm. The last algorithm reduces the space complexity to O(n) while maintaining the same processor and time complexities. Compared to other existing time-optimal algorithms for the parentheses-matching problem that either employ extensive pipelining or use linked lists and comparable data structures, and employ sorting or a linked list ranking algorithm as subroutines, the last two algorithms have two distinct advantages. First, these algorithms employ arrays as their basic data structures, and second, they do not use any pipelining, sorting, or linked list ranking algorithms  相似文献   

14.
Given a sequence of n elements, the All Nearest Smaller Values (ANSV) problem is to find, for each element in the sequence, the nearest element to the left (right) that is smaller, or to report that no such element exists. Time and work optimal algorithms for this problem are known on all the PRAM models but the running time of the best previous hypercube algorithm is optimal only when the number of processors p satisfies 1⩽p⩽n/((lg3 n)(lg lg n)2). In this paper, we prove that any normal hypercube algorithm requires Ω(M) processors to solve the ANSV problem in O(lg n) time, and we present the first normal hypercube ANSV algorithm that is optimal for all values of n and p. We use our ANSV algorithm to give the first O(lg n)-time n-processor normal hypercube algorithms for triangulating a monotone polygon and for constructing a Cartesian tree  相似文献   

15.
In this paper we give parallel algorithms for a number of problems defined on point sets and polygons. All our algorithms have optimalT(n) * P(n) products, whereT(n) is the time complexity andP(n) is the number of processors used, and are for the EREW PRAM or CREW PRAM models. Our algorithms provide parallel analogues to well-known phenomena from sequential computational geometry, such as the fact that problems for polygons can oftentimes be solved more efficiently than point-set problems, and that nearest-neighbor problems can be solved without explicitly constructing a Voronoi diagram.  相似文献   

16.
Given a set S of n proper circular arcs, it is required to identify a largest cardinality subset K[S] of S each two of whose members intersect. This paper describes an optimal parallel algorithm to compute K[S]. The algorithm is not based on any previously known sequential solution, and is designed for the CREW PRAM model of computation. It uses 0(n/logn) processors and runs in O(logn) time. An interesting feature of the algorithm is that it transforms the computational geometric problem at hand, to a problem involving computations on 0-1 matrices, and then transforms the latter back into a ray shooting problem in computational geometry.  相似文献   

17.
This paper determines upper bounds on the expected time complexity for a variety of parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectivity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the expected time to beO(log logn) for the CRCW PRAM (this parallel RAM machine allows resolution of write conflicts) andO(logn · log logn) for the CREW PRAM (which allows simultaneous reads but not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel timeO(log logn) for the CRCW PRAM andO(logn) for the CREW PRAM. Most of these results follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general graphs than was known before. For undirected connectivity especially, we present a new probabilistic algorithm which runs on a randomized input and has an expected running time ofO(log logn) on the CRCW PRAM, withO(n) expected number of processors only. Our results also improve known upper bounds on the expected space required for sequential graph algorithms. For example, we show that the problems of finding connected components, transitive closure, minimum spanning trees, and minimum cost paths have expected sequential spaceO(logn · log logn) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to get these expected sequential space bounds.  相似文献   

18.
An O(n2) time serial algorithm is developed for obtaining the medial axis transform (MAT) of an n×n image. An O(log n) time CREW PRAM algorithm and an O(log2 n) time SIMD hypercube parallel algorithm for the MAT are also developed. Both of these use O(n2) processors. Two problems associated with the MAT, the area and perimeter reporting problem, are studied. An O(log n) time hypercube algorithm is developed for both of them, where n is the number of squares in the MAT, and the algorithms use O(n2) processors  相似文献   

19.
Abstract. We present an optimal parallel randomized algorithm for the Voronoi diagram of a set of n nonintersecting (except possibly at endpoints) line segments in the plane. Our algorithm runs in O(log n) time with high probability using O(n) processors on a CRCW PRAM. This algorithm is optimal in terms of work done since the sequential time bound for this problem is Ω(n log n) . Our algorithm improves by an O(log n) factor the previously best known deterministic parallel algorithm, given by Goodrich, ó'Dúnlaing, and Yap, which runs in O( log 2 n) time using O(n) processors. We obtain this result by using a new ``two-stage' random sampling technique. By choosing large samples in the first stage of the algorithm, we avoid the hurdle of problem-size ``blow-up' that is typical in recursive parallel geometric algorithms. We combine the two-stage sampling technique with efficient search and merge procedures to obtain an optimal algorithm. This technique gives an alternative optimal algorithm for the Voronoi diagram of points as well (all other optimal parallel algorithms for this problem use the transformation to three-dimensional half-space intersection).  相似文献   

20.
Optical interconnections attract many engineers and scientists’ attention due to their potential for gigahertz transfer rates and concurrent access to the bus in a pipelined fashion. These unique characteristics of optical interconnections give us the opportunity to reconsider traditional algorithms designed for ideal parallel computing models, such as PRAMs. Since the PRAM model is far from practice, not all algorithms designed on this model can be implemented on a realistic parallel computing system. From this point of view, we study Cole’s pipelined merge sort [Cole R. Parallel merge sort. SIAM J Comput 1988;14:770–85] on the CREW PRAM and extend it in an innovative way to an optical interconnection model, the LARPBS (Linear Array with Reconfigurable Pipelined Bus System) model [Pan Y, Li K. Linear array with a reconfigurable pipelined bus system—concepts and applications. J Inform Sci 1998;106;237–58]. Although Cole’s algorithm is optimal, communication details have not been provided due to the fact that it is designed for a PRAM. We close this gap in our sorting algorithm on the LARPBS model and obtain an O(log N)-time optimal sorting algorithm using O(N) processors. This is a substantial improvement over the previous best sorting algorithm on the LARPBS model that runs in O(log N log log N) worst-case time using N processors [Datta A, Soundaralakshmi S, Owens R. Fast sorting algorithms on a linear array with a reconfigurable pipelined bus system. IEEE Trans Parallel Distribut Syst 2002;13(3):212–22]. Our solution allows efficiently assign and reuse processors. We also discover two new properties of Cole’s sorting algorithm that are presented as lemmas in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号