首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 515 毫秒
1.
吴忆宁  梅娟  沈耀良 《生态科学》2018,37(4):231-240
甲烷是一种重要的温室气体, 研究证明甲烷厌氧氧化(AOM)对于降低全球甲烷的排放有着重要意义。参与AOM 反应的最终电子受体可分为三类, 即SO2– 4、NO2 /NO3以及以Fe3+、Cr5+等为代表的金属离子。本文基于甲烷厌氧氧化过程所利用的电子受体的差别, 结合不同类型AOM 反应微生物的基因型分析, 阐述了AOM 过程的反应机理、相关的微生物种类及其代谢途径。其中对AAA(AOM-associated archaea, 属于ANME-2d)的分离培养, 以及其利用硝酸盐、Fe3+、Cr5+等离子氧化甲烷的研究对认识AOM 反应机理和AOM 的实际应用有很大推动作用。本文还介绍了AOM 过程在环境污染控制领域实际应用中的最新研究进展, 对AOM 的实际应用及其在节能减排上的价值进行展望。AOM 过程的进一步研究对拓宽该过程的工程应用以及对正确认识全球碳、氮、硫循环均有着重要意义。  相似文献   

2.
硝酸盐和硫酸盐厌氧氧化甲烷途径及氧化菌群   总被引:1,自引:0,他引:1  
甲烷属于温室气体,厌氧氧化甲烷有效地减少了大气环境中甲烷的含量。依据吉布斯自由能变,以SO42、Mn4+、Fe3+、NO3等作为电子受体,厌氧条件下甲烷可以转化为CO2。重点阐述以SO42和NO3为电子受体时甲烷厌氧氧化的机理、反应发生的环境条件以及甲烷厌氧氧化菌的特点。针对目前研究存在的主要问题,提出了今后的发展方向。SO42为电子受体时,甲烷厌氧氧化的可能途径包括:逆甲烷生成途径、乙酰生成途径以及甲基生成途径。甲烷的好氧或厌氧氧化协同反硝化是以NO3为电子受体的甲烷氧化的可能途径。环境中的甲烷、硫酸盐或硝酸盐的浓度,有机质的数量,以及环境条件对甲烷的厌氧氧化有显著影响。  相似文献   

3.
内陆湿地与水体甲烷厌氧氧化功能微生物研究进展   总被引:2,自引:0,他引:2  
沈李东  金靖昊  刘心 《生态学报》2022,42(9):3842-3855
内陆湿地与水体(如湖泊、河流、水库等)是温室气体甲烷的重要排放源。微生物介导的甲烷厌氧氧化(anaerobic oxidation of methane,AOM)反应在控制内陆湿地与水体甲烷排放中起着不可忽视的作用,对缓解全球温室效应具有重要意义。内陆湿地与水体易形成缺氧环境,且电子受体的种类和数量繁多,是发生AOM反应的理想生境。近年来,不断有研究表明,内陆湿地与水体中存在多种电子受体(NO2-、NO3-、SO42-、Fe (III)等)驱动的AOM途径。NC10门细菌和甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)的一新分支ANME-2d主导了湿地和水体环境中的AOM反应,其中ANME-2d具有根据环境条件选择不同电子受体的潜力。研究系统综述了内陆湿地与水体中不同电子受体驱动的AOM途径及其参与的主要功能微生物类群;分析了AOM反应在控制温室气体甲烷排放中的作用及其环境影响因素;总结了相关功能微生物的分子生物学检测方法及甲烷厌氧氧化活性测定的同位素示踪技术。最后,对未来相关研究方向进行了展望。  相似文献   

4.
姜怡如  高峥  李明聪 《微生物学通报》2020,47(10):3318-3328
甲烷是一种比CO_2更活跃的温室气体,微生物驱动的甲烷厌氧氧化(anaerobicoxidationof methane,AOM)过程对于降低全球甲烷的排放有着重要意义。参与AOM反应的最终电子受体主要分为三类,即硫酸盐、亚硝酸盐/硝酸盐以及以Fe(III)、Mn(IV)等为代表的金属离子。可溶性金属物质和不溶性金属矿物都可以被用作AOM的电子受体,这大大提高了参与金属依赖型甲烷厌氧氧化(metal-dependent anaerobic oxidation of methane,Metal-AOM)微生物的生态价值。目前研究聚焦在功能菌群、生态分布等方面。部分甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)具有直接或间接参与Metal-AOM过程的能力。但由于功能菌群纯化富集和分离具有一定难度,有关其生理生化和生态学等特征的研究受到限制。同时,随着Metal-AOM被发现存在于不同水生生境中,其在污染治理领域的应用也被广泛讨论,但是河口生境尚缺乏深入研究。本文从Metal-AOM的发现入手,阐述了参与该过程的主要微生物及其在水域环境下的生态分布,并介绍了Metal-AOM的反应机制和在实际应用中的机遇与挑战。最后,根据现有研究结果,提出对功能菌群、机制及环保应用的研究展望,包括微生物分离纯化和影响因素、菌群代谢活性和作用机制的解析以及新型生产工艺的设计和发展应用,以期为今后的环境污染治理和工业应用提供借鉴意义。  相似文献   

5.
甲烷既是一种温室气体,也是一种潜在的能源物质,其源与汇的平衡对地球化学循环及工程应用均有重要意义。厌氧甲烷氧化(anaerobic oxidation of methane,AOM)过程是深海、湿地和农田等自然生境中重要的甲烷汇,在缓解温室气体排放方面发挥了巨大作用。AOM微生物的中枢代谢机制及其能量转化途径则是介导厌氧甲烷氧化耦合其他物质还原的关键所在。因此,本文从电子受体多样性的视角,主要分析了硫酸盐型,硝酸盐/亚硝酸盐型,金属还原型厌氧甲烷氧化微生物的生理生化过程及环境分布,并对近些年发现的新型厌氧甲烷氧化进行了梳理;重点总结了厌氧甲烷氧化微生物细胞内电子传递路径以及胞外电子传递方式;根据厌氧甲烷氧化微生物环境分布及反应特征,就其生态学意义及在污染治理与能源回收方面的潜在应用价值进行了展望。本综述以期深化对厌氧甲烷氧化过程的微生物学认知,并为其潜在的工程应用方向提供新的思路。  相似文献   

6.
微生物厌氧甲烷氧化反硝化研究进展   总被引:4,自引:0,他引:4  
厌氧甲烷氧化反硝化过程(Denitrifying anaerobic methane oxidation,DAMO)以甲烷为电子供体进行反硝化作用,在实现废水脱氮处理的同时,可有效削减温室气体甲烷的排放,从而减缓全球温室效应。相关机制研究集中在逆向产甲烷途径耦合反硝化和亚硝酸盐依赖型厌氧甲烷氧化(nitrite-dependent anaerobic methane oxidation,n-damo)两个方面。鉴于厌氧甲烷氧化反硝化过程对全球碳氮物质循环的重要意义,本文对近年来厌氧甲烷氧化反硝化过程的研究进展进行了概述,着重阐述了有关厌氧甲烷氧化反硝化微生物富集培养物,特别是含Candidatus Methylomirabilis oxyfera(M.oxyfera)富集培养物的微生物特性、甲烷氧化反硝化的机理以及影响因子。在此基础上,探讨了厌氧甲烷氧化反硝化过程未来的研究方向和工业化应用前景。  相似文献   

7.
为探究光照条件下添加不同电子受体对土壤甲烷排放的影响及微生物的响应,本研究在土壤中添加3种电子受体(Fe3+、NO3-、SO42-)共设计8个处理,即黑暗+ Fe3+(DF)、黑暗+NO3-(DN)、黑暗+SO42-(DS)、黑暗+蒸馏水(DCK)、光照+Fe3+(LF)、光照+NO3-(LN)、光照+SO42-(LS...  相似文献   

8.
甲烷氧化菌及其在环境治理中的应用   总被引:2,自引:0,他引:2  
魏素珍 《应用生态学报》2012,23(8):2309-2318
甲烷的生物氧化包括好氧氧化和厌氧氧化两种,分别由好氧甲烷氧化菌和厌氧甲烷氧化菌完成.由于该过程是减少自然环境中温室气体甲烷排放的重要途径,越来越受到各国学者的重视.本文主要对当前甲烷氧化菌的研究现状进行了综述,对好氧甲烷氧化菌的种类、参与氧化甲烷的关键酶,厌氧甲烷氧化菌的种类、参与的微生物菌种以及氧化机理进行了论述,并对这两类微生物在温室气体减排、污染物治理、废水生物脱氮、硫及金属元素回收等方面的应用现状及前景进行了分析.  相似文献   

9.
刘俊霞  薛丹  黄新亚  刘建亮  高永恒  陈槐 《生态学报》2021,41(13):5317-5327
泥炭地是主要的甲烷(CH4)排放源,甲烷循环过程对水位变化响应敏感。研究选取两块具有水位差异的泥炭地土壤,通过厌氧培养实验探究水位变化对泥炭地甲烷产生和甲烷厌氧氧化(Methane Anaerobic Oxidation,AOM)潜势的影响,并分析影响其潜势大小的生物地球化学因子。结果显示,高水位泥炭地(0 cm) CH4产生累积量为(0.89±0.01)μg/g,要显著高于低水位(-30 cm:(0.70±0.03)μg/g)泥炭地甲烷产生量,但低水位AOM累积量要显著高于高水位泥炭地(0 cm:(2829.93±35.99)μg/g),低水位泥炭地AOM量为(3588.06±24.78)μg/g。通过相关性分析发现甲烷产生潜势与含水量和DOC具有显著相关性,AOM潜势与含水量、pH、DOC具有显著相关性,含水量和DOC是影响若尔盖泥炭地甲烷产生及AOM潜势大小的重要因子。此外,发现高水位泥炭地甲烷产生潜势对温度升高的响应较为明显,特别是表层土壤(0-20 cm)。本研究明确了水位变化对若尔盖泥炭地甲烷产生及AOM潜势的影响特征,估算了全国泥炭地甲烷产生及AOM潜势的大小,以期为减缓全球气候变暖提供一定的理论支撑。  相似文献   

10.
【背景】甲烷厌氧氧化(anaerobic oxidation of methane, AOM)包含反硝化型甲烷厌氧氧化和硫酸盐还原型甲烷厌氧氧化。目前,人们向水体中排放过量的含氮及含硫污染物,引起了严重的环境污染和生态破坏。【目的】利用甲烷厌氧氧化微生物燃料电池(microbial fuel cell, MFC)研究同步脱氮除硫耦合反应机理及反应过程中微生物的多样性信息。【方法】构建了3个微生物燃料电池(N-S-MFC、N-MFC、S-MFC),以甲烷作为唯一碳源,探究其同步脱氮除硫性能,并采用16S rRNA基因高通量测序技术对微生物群落结构进行分析。【结果】N-S-MFC中硝酸盐和硫酸盐的去除率分别为90.91%和18.46%。阳极室中微生物的相对丰度提高,与反硝化及硫酸盐还原菌相关的微生物大量富集,如门水平上拟杆菌门(Bacteroidota)、厚壁菌门(Firmicutes)和脱硫杆菌门(Desulfobacterota),同时属水平上Methylobacterium_Methylorubrum、Methylocaldum、Methylomonas等常见的甲烷氧化菌增多。【结论...  相似文献   

11.
甲烷厌氧氧化作用是减少海洋底泥甲烷释放的重要生物地球化学过程,然而在陆地生态系统中甲烷厌氧氧化作用及其功能菌群的生态功能仍然不确定。对甲烷厌氧氧化菌多样性的研究可为减少甲烷排放提供重要科学依据。与传统的分离培养方法比较,分子检测方法是一种更为快速和高效的研究手段,可直接和全面的反映参与甲烷厌氧氧化作用的功能微生物。以DNA分子标记物为研究对象,重点探讨三类主要的分子标记基因,即16S rRNA,mcr A和pmo A,所采用的相关探针和引物信息,同时从定性和定量两个角度综述土壤甲烷厌氧氧化菌的多样性研究的主要进展,最后提出厌氧甲烷氧化菌多样性研究中存在的一些问题和相应的解决思路。  相似文献   

12.
Uncultured archaeal anaerobic methanotrophs (ANMEs) are known to operate the anaerobic oxidation of methane process, an important sink for the greenhouse gas methane in natural environments. In this study, we designed 16S rRNA gene-specific primers for each of the phylogenetic groups of ANMEs (ANME-1, Guaymas Basin hydrothermal sediment clones group within the ANME-1, ANME-2a, ANME-2b, ANME-2c and ANME-3) based on previously reported sequences. The newly designed primers were used for the detection of the various groups of ANMEs in the sulphate-limited anaerobic environmental samples, i.e. methanogenic sludges, rice field soils, lotus field sediments and natural gas fields. The ANME 16S rRNA gene sequences were detected only in a natural gas field sample among the environments examined in this study and were of the ANME-1 and -2c groups. In addition, the quantitative real-time PCR analysis using the designed primers showed that abundances of ANME-1 and -2c were estimated to be <0.02% of the total prokaryotic 16S rRNA gene community. The newly designed ANME group-specific primers in this study may be useful to survey the distribution and quantitative determination of ANMEs.  相似文献   

13.
Evidence supporting a key role for anaerobic methane oxidation in the global methane cycle is reviewed. Emphasis is on recent microbiological advances. The driving force for research on this process continues to be the fact that microbial communities intercept and consume methane from anoxic environments, methane that would otherwise enter the atmosphere. Anaerobic methane oxidation is biogeochemically important because methane is a potent greenhouse gas in the atmosphere and is abundant in anoxic environments. Geochemical evidence for this process has been observed in numerous marine sediments along the continental margins, in methane seeps and vents, around methane hydrate deposits, and in anoxic waters. The anaerobic oxidation of methane is performed by at least two phylogenetically distinct groups of archaea, the ANME-1 and ANME-2. These archaea are frequently observed as consortia with sulfate-reducing bacteria, and the metabolism of these consortia presumably involves a syntrophic association based on interspecies electron transfer. The archaeal member of a consortium apparently oxidizes methane and shuttles reduced compounds to the sulfate-reducing bacteria. Despite recent advances in understanding anaerobic methane oxidation, uncertainties still remain regarding the nature and necessity of the syntrophic association, the biochemical pathway of methane oxidation, and the interaction of the process with the local chemical and physical environment. This review will consider the microbial ecology and biogeochemistry of anaerobic methane oxidation with a special emphasis on the interactions between the responsible organisms and their environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The Black Sea is a large, euxinic marine basin, in which the anaerobic oxidation of methane (AOM) plays an important role in the carbon cycle. Methane-related carbonate build-ups, found on the NW' Black Sea shelf are part of an unique microbial ecosystem. Two archaeal guilds are mainly responsible for the AOM: ANME-1 (anaerobic-methane-oxidizing communities)/DSS consortia and ANME-2/greigite-bearing DSS-consortia. These microorganisms constitute a significant sink of methane on earth, but despite their relevance for the global carbon cycle little is known about the biology of AOM. Phylogenetic and biochemical analyses suggested that ANME-archaea have supposedly reversed the methanogenic pathway. Here, we were able to localize methyl-coenzyme M reductase (MCR), which catalyzes the final step of the methane formation, in ultrathin sections. The result was obtained by the immunogold labeling technique using a specific antiserum against the MCR. This technique revealed that the MCR is located in both ANME-1- and ANME-2-archaea. The data also show that MCR-like enzymes are not only encoded in the genomes of ANME-1 and ANME-2, but are, in fact, expressed as cellular proteins at high levels.  相似文献   

15.
Methane is a potent greenhouse gas; methane production and consumption within seafloor sediments has generated intense interest. Anaerobic oxidation of methane (AOM) and methanogenesis (MOG) primarily occur at the depth of the sulfate–methane transition zone or underlying sediment respectively. Methanogenesis can also occur in the sulfate-reducing sediments through the utilization of non-competitive methylated compounds; however, the occurrence and importance of this process are not fully understood. Here, we combined a variety of data, including geochemical measurements, rate measurements and molecular analyses to demonstrate the presence of a cryptic methane cycle in sulfate-reducing sediments from the continental shelf of the northern South China Sea. The abundance of methanogenic substrates as well as the high MOG rates from methylated compounds indicated that methylotrophic methanogenesis was the dominant methanogenic pathway; this conclusion was further supported by the presence of the methylotrophic genus Methanococcoides. High potential rates of AOM were observed in the sediments, indicating that methane produced in situ could be oxidized simultaneously by AOM, presumably by ANME-2a/b as indicated by 16S rRNA gene analysis. A significant correlation between the relative abundance of methanogens and methanotrophs was observed over sediment depth, indicating that methylotrophic methanogenesis could potentially fuel AOM in this environment. In addition, higher potential rates of AOM than sulfate reduction rates at in situ methane conditions were observed, making alternative electron acceptors important to support AOM in sulfate-reducing sediment. AOM rates were stimulated by the addition of Fe/Mn oxides, suggesting AOM could be partially coupled to metal oxide reduction. These results suggest that methyl-compounds driven methane production drives a cryptic methane cycling and fuels AOM coupled to the reduction of sulfate and other electron acceptors.  相似文献   

16.
The microorganisms involved in sulfate-dependent anaerobic oxidation of methane (AOM) have not yet been isolated. In an attempt to stimulate the growth of anaerobic methanotrophs and associated sulfate reducing bacteria (SRB), Eckernf?rde Bay sediment was incubated with different combinations of electron donors and acceptors. The organisms involved in AOM coupled to sulfate reduction (ANME-1, ANME-2, and Desulfosarcina/Desulfococcus) were monitored using specific primers and probes. With thiosulfate as sole electron acceptor and acetate, pyruvate or butyrate as the sole electron donor, ANME-1 became the dominant archaeal species. This finding suggests that ANME-1 archaea are not obligate methanotrophs and that ANME-1 can grow on acetate, pyruvate or butyrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号