首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
马超  刘恩海 《半导体光电》2013,34(3):521-523,528
针对跟踪激光雷达对回波信号峰值幅度的需求,分别采用电压型及跨导型峰值保持电路实现窄脉冲信号峰值保持,并测试了不同跨导放大器的保持效果,最终解决了激光雷达回波信号峰值保持的快速以及幅度问题。实验结果表明:采用跨导型峰值保持电路,同时利用双倍缓冲保持方法扩大保持电压峰值范围,可以实现回波信号的峰值提取。该方法采用跨导放大器实现对窄脉冲信号峰值保持的快速性,并利用双倍缓冲器提高驱动能力以及最大可保持峰值。对上升沿约为6ns的脉冲信号,可保持峰值最高达到2.5V、响应时间小于2ns。  相似文献   

2.
基于峰值保持器PKD01的采样保持电路   总被引:3,自引:0,他引:3  
介绍了一种用高响应速度和高精度峰值保持器PKD01来设计采样保持电路的设计方法。该方法采用跨导型运算放大器,同时具有通频带宽、线性好、峰值保持精度高等优点,可快速、准确地检测并保持峰值脉冲信号。  相似文献   

3.
窄脉冲激光信号峰值保持电路设计   总被引:1,自引:0,他引:1  
熊焱  陆耀东  祝敏  邹正峰 《激光与红外》2012,42(12):1377-1380
首先介绍了跨导型峰值保持电路的结构和原理,使用两种不同的跨导放大器,设计了适用于窄脉冲激光信号的跨导型峰值保电路,通过仿真分析后选择其中一种最合适的放大器进行电路实验,并通过实验详细讨论了影响电路保持效果的各项因素。该电路具有结构简单、线性良好、保持精度高等特点。  相似文献   

4.
首先介绍了电压型和跨导型峰值保持电路的基本工作原理。利用Multisim9软件,对影响跨导型峰值保持电路精度的因素进行仿真分析,得出峰值保持电容的选取,对保持精度的影响较大。然后,给出电容容值选取的简化参考公式。最后通过实验,证明以MAX436为设计核心的跨导型峰值保持电路,具有较高的峰值保持精度。  相似文献   

5.
设计了一款两级峰值检测电路,实现对上升沿为3 ns、脉宽为5 ns、下降沿为3 ns、重频为10 kHz的脉冲信号的峰值检测与保持,利用STM32单片机的模数转换器完成电压信号采集。给出以APD为光电探测器件的地面探测器系统的基本结构框图,利用探测器系统中的放大电路模块使接收激光脉冲宽度从1 ns展宽至5 ns,搭配峰值检测电路模块实现窄脉宽、高重频激光信号的检测与数据记录。利用信号源完成峰值检测电路部分的功能测试,使用重频为1 kHz、脉宽约为1 ns的激光器完成探测器系统整体的功能测试,实验证明此系统可以较好地检测并记录该激光信号的峰值。  相似文献   

6.
为提高脉冲激光3D成像系统中提取目标距离和强度信息的精度,对时刻鉴别和峰值保持电路进行了深入研究。在简要分析激光测距体制及探测器选择的基础上,给出了激光3D成像系统结构框图:激光器输出信号经半反半透棱镜,反射光线触发参考APD作为计时起始信号,以提高计时基准。给出了恒定阈值鉴别与恒比定时鉴别相结合的时刻鉴别电路,在提高时刻鉴别精度的同时可有效消除噪声对电路的影响。峰值保持选取基于OPA861的跨导型峰值保持电路。在实验室搭建了回波信号模拟系统,并在此基础上对电路性能进行测试。最后,给出了实验结果。结果显示:时刻鉴别电路精度优于1 ns;当输入窄脉冲峰值信号低于800 mV时,峰值保持电路保持精度优于2.63%。整个结果满足后续实验要求。  相似文献   

7.
纪亚飞  赵柏秦  罗达新 《红外与激光工程》2016,45(7):705004-0705004(8)
双色激光引信在克服云烟干扰方面具有重要价值。为了减小引信体积,保障导弹内部空间的充裕性,设计了一种基于BCD工艺的双色激光引信专用集成电路芯片。首先,对现有双色激光引信的结构和工作原理做出了详细介绍,引出了单芯片设计的思路和方法,并给出了该芯片集成的子电路的设计方法和仿真结果。该芯片使用0.25 m的BCD工艺制造。经测试使用该芯片驱动双色激光器,芯片供电电压5 V,激光器支路供电电压27 V时,红外激光器输出峰值功率可达30 W,紫光激光器输出峰值功率达25 W,脉宽50~500 ns可调,重复频率1~100 kHz可调,窗口时间1~10 s可调,红外和紫光回波信号在接收部分实现了分离,在功能上成功取代了原系统的4块芯片,实现了系统的简化。  相似文献   

8.
在脉冲激光探测中,常采用峰值检测电路获取强度信息。当激光通过部分反射或部分遮挡的空间多层物体时,会产生多个回波。传统峰值检测电路无法准确探测多回波峰值。因此,基于脉冲多回波峰值检测原理,设计了一种具有高集成度的新型脉冲多回波峰值检测电路芯片。该芯片以两级峰值采样保持电路结构为基础,通过采用交织采样和多路复用技术优化了电路结构,实现了对多回波信号的峰值检测。芯片采用CMOS 0.18μm工艺设计,面积约为2.6 mm×0.48 mm,测试结果表明,所设计的芯片能够有效检测幅值范围50~500 mV、脉宽5 ns的多回波信号,峰值输出电压的最大误差为4.8%,通道间的输出电压最大相对偏差为5.7%,具有更精细的多回波探测能力,可集成应用于脉冲激光探测系统。  相似文献   

9.
数字激光告警系统探测接收前端设计   总被引:1,自引:1,他引:0  
探测接收前端是激光告警系统的关键部件,针对数字激光告警系统设计激光脉冲探测接收前端.采用宽带、高增益、低噪声的跨导放大方式实现了对最小来袭激光脉冲产生的10 nA,10 ms的微弱窄脉冲电流的放大,采用放大器饱和方式实现信号的整形,把来袭激光脉冲转换、放大成数字系统能处理的数字脉冲,脉冲宽度代表作用能量大小.前端最小可检测来袭激光信号能量达1μW,动态范围达100 dB.该宽带低噪声跨导放大电路很好地处理了电容对窄脉冲的影响,具有带宽宽(500 MHz),成本低的特点,为放大微弱的ns级及以下的窄脉冲电流信号提供一个很好的宽带方案.该设计结构简单、成本低廉、易于维护,不仅可用于激光来袭探测,还可用于激光安防系统等.  相似文献   

10.
微电流信号的高带宽调理技术及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
严明  李刚  郭明安  杨少华  李斌康 《电子学报》2017,45(9):2292-2295
为实现对电流型快响应探测器微弱信号的高速探测和处理,给出了一种微电流信号的高带宽调理方法.分析了几种PIN光电探测器输出信号的频带和幅度特征;以脉宽50ns、电流范围20nA~0.1mA的微电流信号为设计目标,给出了微电流信号的调理方法和设计分析,设计并实现了针对该目标信号的高带宽调理电路;进行了性能对比测试实验,通过与光电倍增管PMT9215B进行输出响应对比,结果表明该调理电路对脉宽40ns的脉冲信号响应良好,响应波形的上升沿和半高宽约10ns,调理电路的信号带宽约35MHz,信号调理的带宽和幅度达到了量化采样要求,验证了该方法的正确性和可行性;应用该调理电路进行了4×32 PIN二维阵列光电探测系统的设计实现,系统动态范围约56dB,时间响应特性良好.  相似文献   

11.
李涛  祝连庆  刘锋  张荫民 《红外与激光工程》2016,45(1):105003-0105003(5)
介绍了一种利用横向双扩散金属氧化物半导体(LDMOS)作为开关器件驱动激光半导体的设计方法。通过对半导体激光器驱动电路原理的分析,并结合PSPICE建立射频功率晶体管的电路模型,经过理论分析和计算从而获得更优化的驱动电路;采用高速电流反馈型运算放大器构成电流串联负反馈电路从而得到稳定的输出电流,有效地提高了窄脉冲信号的转换速率和频响特性。实验结果表明,半导体激光器输出电流脉宽20 ns-CW可调,上升和下降时间小于10 ns,幅度最高可达2 A,重复频率为0~10 MHz。实验结果验证了设计思路的可行性,进一步提高了半导体激光器的输出指标。  相似文献   

12.
王怡哲  喻学昊  刘墨林  朱能伟  游利兵  方晓东 《红外与激光工程》2023,52(3):20220468-1-20220468-7
为了获得低抖动的准分子激光放大器光源,设计了一种以氢闸流管作为高压开关的低抖动准分子激光放大器系统。利用抖动小于4 ns的闸流管触发电路来触发导通氢闸流管,从外部触发信号到准分子光信号之间有一定的延时时间。研究了以氢闸流管作为高压开关的准分子激光放电回路,外部控制信号发生电路产生外部充电信号和出光信号,转换电路将外部充电信号和出光信号转换成固定脉宽的光信号,在实现低抖动出光前,准分子激光放大器系统热平衡过程中会有一定的出光延时漂移现象。讨论了激光运行重复率、激光运行电压和气体状态在热平衡过程中对稳定延迟时间大小的影响。实验表明,在相同运行电压下,稳定延迟时间随着激光运行重复频率的提高而增大;运行电压越高,稳定延迟时间上升的幅度越大。气体恶化后,光脉冲稳定延迟时间变小。激光运行电压和重复频率越高,延时漂移时间越大。在温漂一定时间后,准分子激光放大器内部系统达到热平衡,以外部触发信号为基准,准分子光脉冲信号实现在5、10、15 Hz重复频率下的5 ns内低抖动出光。  相似文献   

13.
高速瞬态脉冲"缓冲减速"原理和模型   总被引:1,自引:0,他引:1  
提出皮秒级电脉冲"缓冲减速"的原理是利用电容电荷存储网络来实现的.建立了电容电荷存储网络模型和有源缓冲电荷存储网络模型,设计出一种由GaAs MESFET和高频n沟道JFET构成的二级缓冲电荷存储网络.电路仿真结果表明,多级缓冲网络将快速的样品信号转换为低速的慢信号,信号模拟带宽从1.68 GHz降到323 kHz,可直接提供给低通带放大器和低速AD进行波形数据读取和处理,从而避免采用昂贵的宽带放大器和高速AD.  相似文献   

14.
介绍了一种高响应速度和高精度的峰值保持器,这种器件采用跨导型运算放大器,同时具有通频带宽、线性好、峰值保持精度高等优点,可快速、准确地检测并保持峰值脉冲信号。文中介绍了PKD01的主要特点,给出了PKD01在电触头材料电性能模拟试验装置的触头熔焊力测量中的应用电路。  相似文献   

15.
设计了一种全差分增益增强CMOS运算跨导放大器,用于12位100 MHz采样频率的流水线A/D转换器。详细分析了辅助运放产生的零极点对,优化了建立时间。电路采用中芯国际(SMIC)0.18μm混合信号CMOS工艺设计, 1.8 V电压供电。仿真结果表明,运算放大器的开环增益为102 dB,在3pF负载电容下单位增益带宽为1.27G,精度为0.01%时的建立时间为4.3 ns。  相似文献   

16.
A large dynamic range high frequency fully differential CMOS transconductance amplifier is introduced. It is based on the linear transconductance element proposed in [8] combined with the common-mode feedback circuit in [9]. The original transconductance and common-mode circuits which use two supply voltages are modified for operation under a single power supply. The performance of the complete transconductance amplifier is analysed in details. Simulation results of the whole circuit are also presented, which show that with a single 5 V supply, bandwidth in excess of 300 MHz, THD below 0.7% for a 1 V pkpk differential input signal, and dynamic range in excess of 70 dB can be achieved for the fully differential transconductance amplifier.  相似文献   

17.
赵忠伟  张玉钧  沈超 《激光技术》2012,36(3):326-329
为了应对脉冲激光引信回波信号弱、脉宽窄的特性,获得目标尽量多的不失真信息,对光电探测器的特性和放大电路的带宽进行了分析,设计了一套实用的光电转换系统,包括PIN探测电路、前置放大电路和主放大电路。经过TINA和MULTISIM软件模拟仿真和实验验证,设计的光电转换系统的带宽为61.089MHz,增益为72.14dB。结果表明,该系统对于脉宽为十几纳秒的回波脉冲信号进行了很好的低噪声、不失真放大,满足了设计要求,回波信号经光电转换系统后输出的信号与应用需要相匹配,为激光引信的后续信号处理提供了稳定可靠的信号。  相似文献   

18.
A three-gate MOS transistor is demonstrated. Measurements of operating characteristics illustrate the availability of excellent control of the transconductance while simultaneously maintaining very high output resistance. In analog circuit applications, the three-gate device provides additional advantages including better signal isolation, less nonlinearity, and adjustable mismatch in a differential amplifier. A range of operating voltages over which the transconductance is constant is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号