共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2019,44(57):30462-30471
In the present study, characteristics of diffusion H2-air flame in three Y-shaped cylindrical micro-combustors with a diameter of d = 1, 2 and 3 mm were investigated experimentally. The mixture was ignited near the exit of a 200-mm long horizontal channel. First, it is found that more flame propagation modes appear in the combustor with d = 2 mm. Moreover, noise emission commences earlier in larger combustors. Two stages of noise emission are detected in the combustors with d = 2 and 3 mm, whereas only one stage appears under d = 1 mm. In addition, the mean flame propagation speed is the minimum in the combustor with d = 2 mm. Furthermore, the results show that the length of edge flame becomes longer in the combustor with a larger diameter. Interestingly, traveling isolated flame cells, which is also termed “traveling flame street”, is observed in the micro-combustors with d = 1 mm. Finally, the regime diagrams of flame propagation modes are drawn for the three micro-combustors. In conclusion, the present study not only reveals the relationship between flame characteristics and physical and geometrical parameters, but also provides useful guidance for the design of micro-combustors. 相似文献
2.
Vadim N. Kurdyumov 《Combustion and Flame》2004,139(4):329-339
The dynamics of an edge flame in a mixing layer is considered. The flame, which stands at a well-defined distance from the plate separating the fuel and oxidizer streams, is stabilized by heat conducted back to the relatively cold plate. It has a tribrachial structure that consists of a lean premixed segment leaning toward the oxidizer side, a rich premixed segment leaning toward the fuel side, and a diffusion flame trailing behind. Within the context of a diffusive-thermal model, we describe numerically the steady and unsteady behavior of the flame. The primary objective is to systematically identify the conditions for the onset of oscillations examining, in particular, the influence of differential diffusion, mixture strength, flow rate, and radiative heat losses. 相似文献
3.
Using a novel concept, the present study experimentally investigates underlying physics pertaining to statistics of the flame front position and the flame front velocity in turbulent premixed V-shaped flames. The concept is associated with characteristics of the reactants velocity at the vicinity of the flame front, referred to as the edge velocity. The experiments are performed using simultaneous Mie scattering and Particle Image Velocimetry techniques. Three mean streamwise exit velocities of: 4.0, 6.2, and 8.6 m/s along with three fuel–air equivalence ratios of: 0.7, 0.8, and 0.9 are examined. The results show that fluctuations of the flame front position and the flame front velocity are induced by the fluctuations of the component of the edge velocity transverse to the mean flow direction. Analysis of the results show that the mean of the flame front velocity in the normal direction to the flame front is significantly dependent on the vertical distance from the flame-holder. Relatively close to the flame-holder, the mean of the flame front velocity in the direction normal to the flame front is about zero; however, it increases to values several times larger than the laminar flame speed by increasing the vertical distance from the flame-holder. 相似文献
4.
The uncertainties associated with the extraction of laminar flame speeds through extrapolations from directly measured experimental data were assessed using one-dimensional direct numerical simulations with focus on the effects of molecular transport and thermal radiation loss. The simulations were carried out for counterflow and spherically expanding flames given that both configurations are used extensively for the determination of laminar flame speeds. The spherically expanding flames were modeled by performing high fidelity time integration of the mass, species, and energy conservation equations. The simulation results were treated as “data” for stretch rate ranges that are encountered in experiments and were used to perform extrapolations using formulas that have been derived based on asymptotic analyses. The extrapolation results were compared then against the known answers of the direct numerical simulations. The fuel diffusivity was varied in order to evaluate the flame response to stretch and to address reactant differential diffusion effects that cannot be captured based on Lewis number considerations. It was found that for large molecular weight hydrocarbons at fuel-rich conditions, the flame behavior is controlled by differential diffusion and that the extrapolation formulas can result in notable errors. Analysis of the computed flame structures revealed that differential diffusion modifies the fluxes of fuel and oxygen inside the flame and thus affect the reactivity as stretch increases. Radiation loss was found to affect notably the extracted laminar flame speed from spherically expanding flame experiments especially for slower flames, in agreement with recent similar studies. The effect of radiation could be eliminated however, by determining the displacement speed relative to the unburned gas. This can be achieved in experiments using high-speed particle image velocimetry to determine the flow velocity field within the few milliseconds duration of the experiment. In general, extrapolations were found to be unreliable under certain conditions, and it is proposed that the raw experimental data in either flame configurations are compared against results of direct numerical simulations in order to avoid potential falsifications of rate constants upon validation. 相似文献
5.
A. Neophytou 《Combustion and Flame》2009,156(8):1627-1640
In order to clarify the conditions conducive to propagation of premixed flames in quiescent sprays, a one-dimensional code with detailed chemistry and transport was used. n-Heptane and n-decane, distinguished by their volatility, were studied under atmospheric and low temperature, low pressure conditions. The effects of initial droplet diameter, overall equivalence ratio ?0 and droplet residence time before reaching the flame front were examined. Increasing the residence time had an effect only for n-heptane, with virtually no evaporation occurring before the flame front for n-decane. The trends were only marginally correlated with the local gaseous equivalence ratio ?eff at the location of maximum heat release rate. ?eff could be as low as 0.4 (beyond the lean flammability limit), but the flame speed could still be 40% of the gaseous stoichiometric flame speed SL,0. For n-heptane, ?eff increased towards ?0 with smaller droplets while high flame speeds occurred when ?eff was near 1. This implied that the highest flame speed was achieved with small droplets for ?0 ? 1 and with relatively large droplets for ?0 > 1. In the latter case, the oxidiser was completely consumed in the reaction zone and droplets finished evaporating behind the flame where the fuel was pyrolysed. The resulting small species, mainly C2H2, C2H4 and H2, diffused back to the oxidation zone and enhanced the reaction rate there. Ultimately, this could result in flame speeds higher than SL,0 even with ?0 = 4. For n-decane, the same trends were followed but smaller droplets were needed to reach the same ?eff due to the slow evaporation rate. Under low pressure and low temperature, the effects of pressure and temperature on ?eff and the flame speed were competitive and resulted in values close to the ones at atmospheric conditions. 相似文献
6.
The thermal and kinetic effects of O3 on flame propagation were investigated experimentally and numerically by using C3H8/O2/N2 laminar lifted flames. Ozone produced by a dielectric barrier plasma discharge was isolated and measured quantitatively by using absorption spectroscopy. Significant kinetic enhancement by O3 was observed by comparing flame stabilization locations with and without O3 production. Experiments at atmospheric pressures showed an 8% enhancement in the flame propagation speed for 1260 ppm of O3 addition to the O2/N2 oxidizer. Numerical simulations showed that the O3 decomposition and reaction with H early in the pre-heat zone of the flame produced O and OH, respectively, from which the O reacted rapidly with C3H8 and produced additional OH. The subsequent reaction of OH with the fuel and fuel fragments, such as CH2O, provided chemical heat release at lower temperatures to enhance the flame propagation speed. It was shown that the kinetic effect on flame propagation enhancement by O3 reaching the pre-heat zone of the flame for early oxidation of fuel was much greater than that by the thermal effect from the energy contained within O3. For non-premixed laminar lifted flames, the kinetic enhancement by O3 also induced changes to the hydrodynamics at the flame front which provided additional enhancement of the flame propagation speed. The present results will have a direct impact on the development of detailed plasma-flame kinetic mechanisms and provided a foundation for the study of combustion enhancement by O2(a1Δg) in part II of this investigation. 相似文献
7.
Tulip flame - the mechanism of flame front inversion 总被引:1,自引:0,他引:1
The paper explains the mechanism of tulip flame formation in horizontal combustion chambers closed at the ignition end. The explanations are based essentially on the PIV images and the direct visualization of the process. The obtained results demonstrate that the tulip flame is a purely hydrodynamic phenomenon which results from the competition between the backward movement of deflected burned gases expanding from the lateral flame skirts and the forward movement of unburned gases accelerated in the phase of finger-shaped flame. In some configurations a supplementary global movement imposed by the confinement (for example: acoustic waves) is superposed on the two above mentioned, and modifies the parameters of the process. The results also prove that the intrinsic instabilities of the flame front (Rayleigh–Taylor, Richtmyer–Meshkov or Darrieus–Landau) are not involved in this process. The convex shape of the flame front has no influence on the phenomenon. 相似文献
8.
Heat-regenerative small combustors consisting of a combustion space and a pair of counter-current-channels were fabricated. The methane–air combustion characteristics in the combustion space were examined with and without catalytic platinum wires. The installing locations and scale effects of the platinum wires were varied to distinguish between thermo-fluidic and catalytic effects. Temperature distribution through the channels and the compositions of burned gas were measured. Conclusively, the platinum wires in the upstream channel slightly enhanced flame stabilization by an enhanced heat transfer, not by a catalytic reaction. In contrast, the platinum wire located within the recirculation area of the combustion space promoted the catalytic reaction and extended the self-sustainable reaction conditions when it had sufficient surface area. Two reaction regimes, of an ordinary gas reaction and of a catalytic reaction, were distinguished and a hysteresis in the reaction-mode transition was confirmed through the comparison of CO, O2, and methane across the transition conditions. 相似文献
9.
The isolated effect of O2(a1Δg) on the propagation of C2H4 lifted flames was studied at reduced pressures (3.61 kPa and 6.73 kPa). The O2(a1Δg) was produced in a microwave discharge plasma and was isolated from O and O3 by NO addition to the plasma afterglow in a flow residence time on the order of 1 s. The concentrations of O2(a1Δg) and O3 were measured quantitatively through absorption by sensitive off-axis integrated-cavity-output spectroscopy and one-pass line-of-sight absorption, respectively. Under these conditions, it was found that O2(a1Δg) enhanced the propagation speed of C2H4 lifted flames. Comparison with the results of enhancement by O3 found in part I of this investigation provided an estimation of 2-3% of flame speed enhancement for 5500 ppm of O2(a1Δg) addition from the plasma. Numerical simulation results using the current kinetic model of O2(a1Δg) over-predicts the flame propagation enhancement found in the experiments. However, the inclusion of collisional quenching rate estimations of O2(a1Δg) by C2H4 mitigated the over-prediction. The present isolated experimental results of the enhancement of a hydrocarbon fueled flame by O2(a1Δg), along with kinetic modeling results suggest that further studies of CnHm + O2(a1Δg) collisional and reactive quenching are required in order to correctly predict combustion enhancement by O2(a1Δg). The present experimental results will have a direct impact on the development of elementary reaction rates with O2(a1Δg) at flame conditions to establish detailed plasma-flame kinetic mechanisms. 相似文献
10.
Sina Davazdah Emami Meisam Rajabi Che Rosmani Che Hassan Mahar Diana A. Hamid Rafiziana M. Kasmani Mojtaba Mazangi 《International Journal of Hydrogen Energy》2013
Nowadays, hydrogen is being utilized massively in industries as a clean fuel. Displacing of hydrogen due to unique chemical and physical properties has adversely affect on pipeline network, hence increases the potential risk of explosion. This study was carried out to determine the flame propagation of hydrogen/air and hydrogen–methane/air mixtures in pipeline. A 90° pipeline with L/D ratio of 40 was used. Pure hydrogen/air mixture with equivalence ratio, φ = 0.13, 0.17, 0.2, 0.24, 0.27 and 0.30 were used in this work. Different composition of hydrogen–methane–air mixtures were tested in this study i.e. 3%H2 + 97CH4, 4%H2 + 96CH4, 6%H2 + 94CH4 and 8%H2 + 92CH4. All mixtures were operated at ambient condition. The results show that bending is the critical part of pipeline and higher concentration of hydrogen can affect on maximum overpressure, flame speed and temperature rise of both pure hydrogen/air and methane-hydrogen/air mixtures. 相似文献
11.
The appearance of the squish flame is of great significance to accelerate burning progress and improve the combustion efficiency. In this paper, we experimentally studied the characteristics of the squish flame in a cylindrical constant volume vessel under different initial pressures and equivalence ratios by using high-speed schlieren photometry. Due to the compression of the main flame front, “squish flow” was induced in the analogous triangular vertebrae region besieged by the convex flame front, the concave wall and the flat optical windows, which provided the perturbation of large wavelength to promote the appearance of the squish flame. When the squish flames occur, as the initial pressure increases, the main flame propagation distance becomes shorter, the main flame propagation velocity increases first and then gradually saturates to a certain value; as the equivalence ratio increases, the main flame propagation distance becomes longer, the main flame propagation velocity rises first and then declines, and the maximum is obtained in the vicinity of Φ = 1.0. There exists a critical initial pressure at each equivalence ratio below which no squish flame appears, and it takes on a U-shaped trend with the increase of equivalence ratio. The hydrodynamic instability plays a key role in the formation of the squish flame. The squish flame tends to appear at higher hydrodynamic instability. The formation mechanism and the critical feature of the squish flame obtained in this paper can provide a theoretical guide to achieve fast controllable combustion. 相似文献
12.
《International Journal of Hydrogen Energy》2023,48(14):5696-5707
The effect of slit-width on the combustion characteristics of a micro-combustor with a centrally slotted bluff body is numerically studied. The non-dimensional fractional slit-width (d) is varied in the range of 0.1–0.8. Simulations are performed for inlet velocities ranging from 6 m/s to 35 m/s. The effect of slit-width on the combustion efficiency is observed to be a function of the inlet velocity. At smaller inlet velocities, the combustion efficiency increases upon increasing the slit-width initially (d ≤ 0.4), decreases (d = 0.4 to 0.5) and monotonously increases from thereon. On the contrary, at higher values of inlet velocity, the combustion efficiency monotonously increases with the increasing slit-width. It is observed that the average exhaust gas temperature increases with the increasing slit-width, reaches a maximum at moderate slit-widths (d = 0.6 and 0.7) and then decreases. It is observed that the local exhaust gas temperature at moderate slit-widths for higher values of inlet velocities follows a bi-modal distribution. It is also observed that the operating range of the micro-combustor with moderate slit-width (d = 0.6 and 0.7) is limited by the phenomenon of longitudinal flame splitting. 相似文献
13.
《International Journal of Hydrogen Energy》2019,44(44):24321-24330
The self-acceleration characteristics of a syngas/air mixture turbulent premixed flame were experimentally evaluated using a 10% H2/90% CO/air mixture turbulent premixed flame by varying the turbulence intensity and equivalence ratio at atmospheric pressure and temperature. The propagation characteristics of the turbulent premixed flame including the variation in the flame propagation speed and turbulent burning velocity of the syngas/air mixture turbulent premixed flame were evaluated. In addition, the effect of the self-acceleration characteristics of the turbulent premixed flame was also evaluated. The results show that turbulence gradually changes the radius of the premixed flame from linear growth to nonlinear growth. With the increase of turbulence intensity, the formation of a cellular structure of the flame front accelerated, increasing the flame propagation speed and burning speed. In the transition stage, the acceleration exponent and fractal excess of the turbulent premixed flame decreased with increasing equivalence ratio and increased with increasing turbulence intensity at an equivalence ratio of 0.6. The acceleration exponent was always greater than 1.5. 相似文献
14.
Effect of electric fields on the propagation speed of tribrachial flames in coflow jets 总被引:2,自引:0,他引:2
The effect of electric fields on the propagation speed of tribrachial (or triple) flames has been investigated in a coflow jet by observing the transient flame propagation behavior after ignition. The propagation speed of tribrachial edges when no electric fields were applied showed typical behavior by having an inverse proportionality to the mixture fraction gradient at the flame edge. The behavior of flame propagation with electric fields was investigated by applying high voltage to the central fuel nozzle, thereby having a single-electrode configuration. The enhancement of propagation speed has been observed by varying the applied voltage and frequency for ac electric fields. The propagation speed of tribrachial flames was also investigated by applying positive and negative dc voltages to the nozzle, and similar improvements of the propagation speed were also observed. The propagation speeds of tribrachial flames in both the ac and dc electric fields correlated well with the electric field intensity, defined by the applied electric voltage divided by the distance between the nozzle electrode and the edge of the tribrachial flame. 相似文献
15.
T. Katsumi T. Aida K. Aiba S. Kadowaki 《International Journal of Hydrogen Energy》2017,42(11):7360-7365
Propagation characteristics of hydrogen-air deflagration need to be understood for an accurate risk assessment. Especially, flame propagation velocity is one of the most important factors. Propagation velocity of outwardly propagating flame has been estimated from burning velocity of a flat flame considering influence of thermal expansion at a flame front; however, this conventional method is not enough to estimate an actual propagation velocity because flame propagation is accelerated owing to cellular flame front caused by intrinsic instability in hydrogen-air deflagration. Therefore, it is important to understand the dynamic propagation characteristics of hydrogen-air deflagration. We performed explosion tests in a closed chamber which has 300 mm diameter windows and observed flame propagation phenomena by using Schlieren photography. In the explosion experiments, hydrogen-air mixtures were ignited at atmospheric pressure and room temperature and in the range of equivalence ratio from 0.2 to 1.0. Analyzing the obtained Schlieren images, flame radius and flame propagation velocity were measured. As the result, cellular flame fronts formed and flame propagations of hydrogen–air mixture were accelerated at the all equivalence ratios. In the case of equivalent ratio φ = 0.2, a flame floated up and could not propagate downward because the influence of buoyancy exceeded a laminar burning velocity. Based upon these propagation characteristics, a favorable estimation method of flame propagation velocity including influence of flame acceleration was proposed. Moreover, the influence of intrinsic instability on propagation characteristics was elucidated. 相似文献
16.
This paper numerically analyzes the propagation characteristics of a hydrogen flame in coaxial vitiated flow in a confined quartz tube. The transient propagation of the flame is calculated using Li's Mechanism of hydrogen oxidation, and the propagation characteristics are discussed based on these calculations. The formation of the reaction zone, the ignition of fuel, the transformation of the flame's base structure, and the propagation behavior of the hydrogen jet flame base are characterized in the present study. The flame characteristics is analyzed based on calculated results, the information provide several insight into the flame propagation and ignition layer at the leading edge in vitiated situations. The results show that the leading point of a hydrogen flame in coaxial fresh air propagates along the preferred equivalence ratio isoline as the flame has a triple flame structure. On the contrary, in vitiated coaxial flow, the propagation of the hydrogen flame fits triple flame theory more precisely. The flame's kinetic properties show that hydrogen flame propagation in coaxial vitiated flow is still dominated by the triple flame. The results also suggest that the transformation of the flame during propagation is affected by the pool of radicals as well as the chemical reactions. 相似文献
17.
Minggao Yu Xufeng Yang Kai Zheng Ligang Zheng Xiaoping Wen 《International Journal of Hydrogen Energy》2018,43(29):13676-13686
The propagation behaviour of a deflagration premixed syngas/air flame over a wide range of equivalence ratios is investigated experimentally in a closed rectangular duct using a high-speed camera and pressure transducer. The syngas hydrogen volume fraction, φ, ranges from 0.1 to 0.9. The flame propagation parameters such as flame structure, propagation time, velocity and overpressure are obtained from the experiment. The effects of the equivalence ratio and hydrogen fraction on flame propagation behaviour are examined. The results indicate that the hydrogen fraction in a syngas mixture greatly influences the flame propagation behaviour. When φ, the hydrogen fraction, is ≥0.5, the prominently distorted tulip flame can be formed in all equivalence ratios, and the minimum propagation time can be obtained at an equivalence ratio of 2.0. When φ < 0.5, the tulip flame distortion only occurs in a hydrogen fraction of φ = 0.3 with an equivalence ratio of 1.5 and above. The minimum flame propagation time can be acquired at an equivalence ratio of 1.5. The distortion occurs when the maximum flame propagation velocity is larger than 31.27 m s?1. The observable oscillation and stepped rise in the overpressure trajectory indicate that the pressure wave plays an important role in the syngas/air deflagration. The initial tulip distortion time and the plane flame formation time share the same tendency in all equivalence ratios, and the time interval between them is nearly constant, 4.03 ms. This parameter is important for exploring the quantitative theory or models of distorted tulip flames. 相似文献
18.
19.
Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames 总被引:2,自引:0,他引:2
A.P. Kelley 《Combustion and Flame》2009,156(9):1844-1851
Various factors affecting the determination of laminar flames speeds from outwardly propagating spherical flames in a constant-pressure combustion chamber were considered, with emphasis on the nonlinear variation of the stretched flame speed to the flame stretch rate, and the associated need to nonlinearly extrapolate the stretched flame speed to yield an accurate determination of the laminar flame speed and Markstein length. Experiments were conducted for lean and rich n-butane/air flames at initial pressure, demonstrating the complex and nonlinear nature of the dynamics of flame evolution, and the strong influences of the ignition transient and chamber confinement during the initial and final periods of the flame propagation, respectively. These experimental data were analyzed using the nonlinear relation between the stretched flame speed and stretch rate, yielding laminar flame speeds that agree well with data determined from alternate flame configurations. It is further suggested that the fidelity in the extraction of the laminar flame speed from expanding spherical flames can be facilitated by using small ignition energy and a large combustion chamber. 相似文献
20.
Wei Wei Zhou Yu Taotao Zhou Taohong Ye 《International Journal of Hydrogen Energy》2018,43(18):9036-9045
Numerical simulations are performed to study the flame propagation of laminar stratified syngas/air flames with the San Diego mechanism. Effects of fuel stratification, CO/H2 mole ratio and temperature stratification on flame propagation are investigated through comparing the distribution of flame temperature, heat release rate and radical concentration of stratified flame with corresponding homogeneous flame. For stratified flames with fuel rich-to-lean and temperature high-to-low, the flame speeds are faster than homogeneous flames due to more light H radical in stratified flames burned gas. The flame speed is higher for case with larger stratification gradient. Contrary to positive gradient cases, the flame speeds of stratified flames with fuel lean-to-rich as well as with temperature low-to-high are slower than homogeneous flames. The flame propagation accelerates with increasing hydrogen mole ratio due to higher H radical concentration, which indicates that chemical effect is more significant than thermal effect. Additionally, flame displacement speed does not match laminar flame speed due to the fluid continuity. Laminar flame speed is the superposition of flame displacement speed and flow velocity. 相似文献