首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Effect of Gd0.2Ce0.8O1.9 (GDC) infiltration on the performance and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes on Y2O3-stabilized ZrO2 (YSZ) electrolyte has been studied in detail under solid oxide electrolysis cell (SOEC) operating conditions at 800 °C. The incorporation of GDC nanoparticles significantly enhances the electrocatalytic activity for oxygen oxidation reaction on LSM electrodes. Electrode polarization resistance of pristine LSM electrode is 8.2 Ω cm2 at 800 °C and decreases to 0.39 and 0.09 Ω cm2 after the infiltration of 0.5 and 1.5 mg cm−2 GDC, respectively. The stability of LSM oxygen electrodes under the SOEC operating conditions is also significantly increased by the GDC infiltration. A 2.0 mg cm−2 GDC infiltrated LSM electrode shows an excellent stability under the anodic current passage at 500 mA cm−2 and 800 °C for 100 h. The infiltrated GDC nanoparticles effectively shift the reaction sites from the LSM electrode/YSZ electrolyte interface to the LSM grains/GDC nanoparticle interface in the bulk of the electrode, effectively mitigating the delamination at the LSM/YSZ interface. The results demonstrate that the GDC infiltration is an effective approach to enhance the structural integrity and thus to achieve the high activity and excellent stability of LSM-based oxygen electrode under the SOEC operating conditions.  相似文献   

2.
Reversible solid oxide cells (rSOC) can convert excess electricity to valuable fuels in electrolysis cell mode (SOEC) and reverse the reaction in fuel cell mode (SOFC). In this work, a five – cell rSOC short stack, integrating fuel electrode (Ni-YSZ) supported solid oxide cells (Ni-YSZ || YSZ | CGO || LSC-CGO) with an active area of 100 cm2, is tested for cyclic durability. The fuel electrode gases of H2/N2:50/50 and H2/H2O:20/80 in SOFC and SOEC mode, respectively, are used during the 35 reversible operations. The voltage degradation of the rSOC is 1.64% kh?1 and 0.65% kh?1 in SOFC and SOEC mode, respectively, with fuel and steam utilisation of 52%. The post-cycle steady-state SOEC degradation of 0.74% kh?1 suggests improved lifetime during rSOC conditions. The distribution of relaxation times (DRT) analysis suggests charge transfer through the fuel electrode is responsible for the observed degradation.  相似文献   

3.
Electrode/electrolyte interface plays a critical role in the performance and stability of solid oxide fuel cells (SOFCs). In the case of La0·6Sr0·4Co0·2Fe0·8O3-δ (LSCF) cathode, it is well known that cathodic polarization promotes the Sr segregation and diffusion towards the LSCF electrode and Y2O3–ZrO2 (YSZ) electrolyte interface, leading to the formation of SrZrO3 secondary phase and the disintegration of LSCF structure at the interface. On the other hand, LSCF is chemically stable with doped ceria electrolytes such as Gd-doped CeO2 (GDC). However, there appears no comparative studies on the intrinsic relationship between the surface segregation, interface reaction and stability of LSCF in YSZ and GDC electrolytes. Here, a comparative study has been carried out on the segregation and interface formation of LSCF on GDC and YSZ electrolyte under identical cathodic polarization conditions at 750 °C and 1000 mAcm?2 using focused ion beam and scanning transmission electron microscopy (FIB-STEM) techniques. Segregation of Sr occurs in the LSCF-GDC system, however, the inertness of GDC electrolyte suppresses the segregation process of Sr species. Instead, surface segregation of B-site Co cation becomes dominant under the cathodic polarization, forming isolated CoOx particles. The results indicate that the existence of chemical catchers such as Zr in the case of YSZ electrolyte for the segregated Sr species is kinetically the driving force for the Sr segregation and stability of LSCF electrodes under SOFC operation conditions.  相似文献   

4.
The electrochemical performance of two different anode supported tubular cells (50:50 wt% NiO:YSZ (yttria stabilized zirconia) or 34:66 vol.% Ni:YSZ) as the fuel electrode and YSZ as the electrolyte) under SOFC (solid oxide fuel cell) and SOEC (solid oxide electrolysis cell) modes were studied in this research. LSM (La0.80Sr0.20MnO3−δ) was infiltrated into a thin porous YSZ layer to form the oxygen electrode of both cells and, in addition, SDC (Sm0.2Ce0.8O1.9) was infiltrated into the fuel electrode of one of the cells. The microstructure of the infiltrated fuel cells showed a suitable distribution of fine LSM and SDC particles (50–100 nm) near the interface of electrodes and electrolyte and throughout the bulk of the electrodes. The results show that SDC infiltration not only enhances the electrochemical reaction in SOFC mode but improves the performance even more in SOEC mode. In addition, LSM infiltrated electrodes also boost the SOEC performance in comparison with standard LSM–YSZ composite electrodes, due to the well-dispersed LSM nanoparticles (favouring the electrochemical reactions) within the YSZ porous matrix.  相似文献   

5.
Highly sinterable gadolinia doped ceria (GDC) powders are prepared by carbonate coprecipitation and applied to the GDC interlayer in Ni–YSZ (yttria stabilized zirconia)-supported tubular solid oxide fuel cell in order to prevent the reaction between YSZ electrolyte and LSCF (La0.6Sr0.4Co0.2Fe0.8O3−δ) cathode materials. The formation of highly resistive phase at the YSZ/LSCF interface was effectively blocked by the low-temperature densification of GDC interlayer using carbonate-derived active GDC powders and the suppression of Sr diffusion toward YSZ electrolyte via GDC interlayer by tuning the heat-treatment temperature for cathode fabrication. The power density of the cell with the configuration of Ni–YSZ/YSZ/GDC/LSCF–GDC/LSCF was as high as 906 mW cm−2, which was 2.0 times higher than that (455 mW cm−2) of the cell with the configuration of Ni–YSZ/YSZ/LSM(La0.8Sr0.2MnO3−δ)–YSZ/LSM at 750 °C.  相似文献   

6.
Steam electrolysis (H2O → H2 + 0.5O2) was investigated in solid oxide electrolysis cells (SOECs). The electrochemical performance of GDC-impregnated Ni-YSZ and 0.5% wt Rh-GDC-impregnated Ni-YSZ was compared to a composite Ni-YSZ and Ni-GDC electrode using a three-electrode set-up. The electrocatalytic activity in electrolysis mode of the Ni-YSZ electrode was enhanced by GDC impregnation. The Rh-GDC-impregnated Ni-YSZ exhibited significantly improved performance, and the electrode exhibited comparable performance between the SOEC and SOFC modes, close to the performance of the composite Ni-GDC electrode. The performance and durability of a single cell GDC-impregnated Ni-YSZ/YSZ/LSM-YSZ with an H2 electrode support were investigated. The cell performance increased with increasing temperature (700 °C-800 °C) and exhibited comparable performance with variation of the steam-to-hydrogen ratio (50/50 to 90/10). The durability in the electrolysis mode of the Ni-YSZ/YSZ/LSM-YSZ cell was also significantly improved by the GDC impregnation (200 h, 0.1 A/cm2, 800 °C, H2O/H2 = 70/30).  相似文献   

7.
This paper investigates a (La0.6Sr0.4)(Co0.2Fe0.8)O3 (LSCF)–Y0.16Zr0.92O1.96 (YSZ)–Gd0.1Ce0.9O2−δ (GDC) dual composite cathode to achieve better cathodic performance compared to an LSM/GDC–YSZ dual composite cathode developed in previous research. To synthesize the structures of the LSCF/GDC–YSZ and LSCF/YSZ–GDC dual composite cathodes, nano-porous composite cathodes containing LSCF, YSZ, and GDC were prepared by a two-step polymerizable complex (PC) method which prevents the formation of YSZ–GDC solid solution. At 800 °C, the electrode polarization resistance of the LSCF/YSZ–GDC dual composite cathode showed to be significantly lower (0.075 Ω cm2) compared to that of a commercial LSCF–GDC cathode (0.195 Ω cm2), a synthesized LSCF/GDC–YSZ dual composite cathode (0.138 Ω cm2), and an LSM/GDC–YSZ dual composite cathode (0.266 Ω cm2) respectively. Moreover, the Ni–YSZ anode-supported single cell containing the LSCF/YSZ–GDC dual composite cathode achieved a maximum power density of 1.24 W/cm2 and showed excellent durability without degradation under a load of 1.0 A/cm2 over 570 h of operation at 800 °C.  相似文献   

8.
Cobaltite-based perovskites based on Sm0.5Sr0.5CoO3−δ (SSC) are attractive as a cathode material with a barrier layer for solid oxide fuel cells (SOFC) due to their high electrochemical activity and electrical conductivity. SSC, synthesized by a complex method, is used as a cathode material in a composite cathode with Gd-doped ceria (GDC). A porous GDC layer is fabricated as a barrier to resist reactions of SSC with yttria-stabilized zirconia (YSZ). The effects of the ratio of SSC on GDC in composite cathodes and the thickness of the GDC barrier are characterized in this study. An SOFC with an SSC7–GDC3 composite cathode on a 4 μm GDC layer at 0.8 V yields the highest fuel cell performance: 1.24 W cm2 and 0.61 W cm2 at 780 °C and 680 °C, respectively. Impedance analysis indicates that the ohmic resistances are more dependent upon the GDC barrier thickness than the cathode composition. The polarization resistances at 780 °C and 730 °C exhibit similar values, but with decreasing temperature, the polarization resistances change dramatically according to the composition and barrier thickness. The ohmic and polarization resistances show different trends in different temperature ranges, due to the different charge transfer mechanisms of SSC and GDC within those temperature ranges. To obtain higher fuel cell performance, the addition of GDC into the porous SSC is effective, and the compositions of the composite cathode as well as the thickness of the barrier layer need to be optimized.  相似文献   

9.
The electrochemical performance of the Ni0.8Co0.15Al0.05LiO2 (NCAL) cathode was investigated by comparing it with the traditional La0.4Sr0.6Co0.2Fe0.8O3-δ (LSCF) and LSCF/Ce0.9Gd0.1O2-δ (GDC) cathodes with a GDC electrolyte-supported solid oxide fuel cell (SOFC). It is found that the electrochemical performance of the cells with the NCAL and NCAL/GDC cathode is better than that of the cells with the LSCF and LSCF/GDC cathode at 550 °C. The results of the electrochemical performance tests of the cells with different NCAL/GDC mass ratios (10/0, 9/1, 8/2, 7/3 and 6/4) show that the NCAL/GDC composite cathode with the mass ratio of 8/2 has the best electrochemical performance. XRD results show that when the sintering temperature is higher than 700 °C, the NCAL/GDC composite will undergo chemical reactions and generate new phases, reducing the performance of the composite cathode. XPS results show that a small amount of Li2CO3 was formed on the surface of NCAL during cathode preparation, forming a special interface between NCAL, Li2CO3 and GDC. At the NCAL-Li2CO3/GDC interfaces, due to the migration and aggregation of Li+ to the interface, a space charge region may be formed in which the Li+ enrichment may lead to the formation of the region with a high oxygen vacancy concentration. A very high oxygen vacancy concentration at the NCAL-Li2CO3/GDC interfaces will provide sufficient oxygen ion conductivity for oxygen reduction reaction (ORR) and reduce the activation energy of the reaction. NCAL will be a potential cathode material that can reduce the operating temperature of the traditional SOFC to 550 °C or lower.  相似文献   

10.
A cermet of silver and gadolinium-doped-ceria (Ag-GDC) is investigated as novel symmetrical electrode material for (ZrO2)0.92(Y2O3)0.08 (YSZ) electrolyte-supported solid oxide cells (SOCs) operated in fuel cell (SOFC) and electrolysis (SOEC) modes. The electrochemical performances are evaluated by measuring the current density-voltage characteristics and impedance spectra of the SOCs. The activity of hydrogen and air electrodes is investigated by recording overpotential versus current density in symmetrical electrode cells, respectively in hydrogen and air, using a three-electrode method. Conventional hydrogen electrode, Ni-YSZ, and oxygen electrode, LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ)-GDC, are tested as comparison. The results show that, as an oxygen electrode, Ag-GDC is more active than LSCF-GDC in catalyzing both oxygen reduction reaction (ORR) in an SOFC and oxygen evolution reaction (OER) in an SOEC. As a hydrogen electrode, Ag-GDC is more active than Ni-YSZ in catalyzing hydrogen oxidation reaction (HOR) in an SOFC and hydrogen evolution reaction (HER) in an SOEC, especially in high steam concentration. An SOC with symmetrical Ag-GDC electrodes operated in a fuel cell mode, with 3% H2O humidified H2 as the fuel, displays a peak power density of 395 mWcm?2 at 800 °C. Its polarization resistance at open circuit voltage is 0.21 Ω cm2. Ag-GDC electrode can be operated even at pure steam. An SOEC operated for electrolyzing 100% H2O, the current density reaches 720 mA cm?2 under 1.3 V at 800 °C.  相似文献   

11.
Steam electrolysis for hydrogen production is investigated in solid oxide electrolysis cell (SOEC). Sc3+, Ce4+, and Gd3+ are doped in zirconia (SCGZ) and compared with yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC) electrolyte. Electrolyte-supported cells are fabricated. The SCGZ and YSZ electrolytes are dense with >95% relative density while GDC is less densified. The activation energy of conduction of the SCGZ electrolyte is the lowest at 65.58 kJ mol?1 although phase transformation is detected after electrolyte fabrication process. Cathode-supported cell having SCGZ electrolyte (Ni-SCGZ/SCGZ/BSCF) shows the highest electrochemical performance. Durability test of the cells in electrolysis mode is carried out over 60 h (0.3 A cm?2, 1073 K, H2O to H2 ratio of 70:30). Significant performance degradation of Ni-GDC/YSZ/GDC/BSCF cell is observed (0.0057 V h?1) whereas the performance of Ni-YSZ/YSZ/BSCF and Ni-SCGZ/SCGZ/BSCF are rather stable under the same operating conditions. The BSCF remains attaching to the SCGZ electrolyte and additional phase transformation is not observed after prolong operation.  相似文献   

12.
La1-xSrxMnO3 is a well-known oxygen electrode for reversible solid oxide cells (RSOCs). However, its poor ionic conductivity limits its performance in redox reaction. In this study, we selected Sm0.5Sr0.5CoO3-δ (SSC) as catalyst and Sm0.2Ce0.8O1.9 (SDC) as ionic conductor and sintering inhibitor to co-modify the La0.65Sr0.35MnO3 (LSM) oxygen electrode through an alternate infiltration method. The infiltration sequence of SSC and SDC showed an influence on the morphology and performance of LSM oxygen electrode, and the influence was gradually weakened with the increasing infiltration time. The polarization resistance of the alternately infiltrated LSM-SSC/SDC electrode was 0.08 Ω cm2 at 800 °C in air, which was 3.36% of the LSM electrode (2.38 Ω cm2). The Ni-YSZ/YSZ/LSM-SSC/SDC single cell attained a maximum power density of 1205 mW cm?2 in SOFC mode at 800 °C, which was 8.73 times more than the cell with LSM electrode. The current density achieved 1620 mA .cm?2 under 1.5 V at 800 °C in SOEC mode and the H2 generation rate was 3.47 times of the LSM oxygen electrode.  相似文献   

13.
A composite double layer cathode of La0.6Sr0.4Co0.8Fe0.2O3?δ/La0.8Sr0.2FeO3?δ (LSCF/LSF) was successfully fabricated by infiltration method to accelerate the sluggish oxygen reduction reaction (ORR) processes. In this composite cathode, both LSF and LSCF layers are uniformly distributed on Yttria-stabilized Zirconia (YSZ) scaffold by optimizing the infiltrating solution components. LSF serves as a protective layer between LSCF and YSZ. The introduction of the LSCF exterior layer has greatly improved cell performance compared with the cell with sole LSF cathode. At 600 °C, the maximum power density of the cell with LSCF/LSF/YSZ composite cathode reaches up to 0.559 W cm?2. The evolution of the cathode polarization resistance verifies that the ORR activity has been greatly enhanced. Therefore, the results indicate that the high cell performance at intermediate temperatures can be obtained by adopting the LSCF cathode into YSZ-based SOFCs using protective layer and that the infiltration method is a practical way for constructing electrode.  相似文献   

14.
Thermo-mechanical properties of SOFC/SOEC electrodes have been computed by homogenization from three-dimensional reconstructions of their microstructure. The support and the functional layer of a Ni/YSZ supported cell and the oxygen electrode made of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) have been studied. Values of the effective Young's modulus obtained for the thick porous Ni/YSZ support are in good agreement with the experimental data (E = 35 GPa). Besides, for thin functional layers, the methodology supplies original values that are difficult to obtain by conventional experimental methods (E = 105 GPa for the Ni/YSZ Functional Layer and E = 55 GPa for the LSCF electrode). Furthermore, it has been shown that the effective elastic parameters are influenced by the following morphological parameters: the porosity and the formation factor that could also be related to the manufacturing process. Theses morphological parameters have however negligible effect on the effective thermal expansion.  相似文献   

15.
This paper describes the reversible operation of a highly efficient microtubular solid oxide cell (SOC) with a nickelate-based oxygen electrode. The fuel cell was composed of a microtubular support of nickel and yttria stabilized zirconia (Ni-YSZ), an YSZ dense electrolyte, and a double oxygen electrode formed by a first composite layer of praseodymium nickelate (PNO) and gadolinium-doped ceria (CGO) and a second one of PNO. A good performance of the cell was obtained at temperatures up to 800 °C for both fuel cell (SOFC) and electrolysis (SOEC) operation modes, specially promising in electrolysis mode. The current density in SOEC mode at 800 °C is about −980 mA cm−2 at 1.2V with 50% steam. Current density versus voltage curves (j-V) present a linear behavior in the electrolysis mode, with a specific cell area resistance (ASR) of 0.32 Ω cm−2. Durability experiments were carried out switching the voltage from 0.7V to 1.2V. No apparent degradation was observed in fuel cell mode and SOEC mode up to a period of about 100 h. However, after this period especially in electrolysis mode there is an accumulated degradation associated to nickel coarsening, as confirmed by SEM and EIS experiments. Those results confirm that nickelate based oxygen electrodes are excellent candidates for reversible SOCs.  相似文献   

16.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) was synthesized successfully by a novel citric acid–nitrate combustion method and employed as the anode of solid oxide electrolysis cells (SOEC) for hydrogen production for the first time in this paper. The crystal structure, chemical composition and electrochemical properties of BSCF were investigated in detail. The results showed that BSCF is in good stoichiometry of Ba0.5Sr0.5Co0.8Fe0.2O3−σ formation. ASR of BSCF/YSZ is only 0.077 Ω cm2 at 850 °C, remarkably lower than the commonly used oxygen materials LSM as well as the current focus materials LSC and LSCF. Also, BSCF electrode exhibited much better performance than LSM under both SOEC and SOFC operating modes. The hydrogen production rate of BSCF/YSZ/Ni-YSZ can be up to 147.2 mL cm−2 h−1, about three times higher than that of LSM/YSZ/Ni-YSZ, which indicates that BSCF could be a very promising candidate for the practical application of SOEC technology.  相似文献   

17.
Doped-ceria is an attractive electrolyte material for solid oxide electrolysis cells (SOECs) operated at intermediate temperatures. However, ceria is highly prone to break down under high applied voltages and low oxygen partial pressures at the fuel side. This phenomenon is analyzed for the typical Sm0.2Ce0.8O1.9−δ electrolyte based on the chemically-induced stress, which is caused by the inhomogeneous distribution of oxygen non-stoichiometry throughout the thickness of electrolyte plate. The sensitivities of the maximum tensile stresses are explored under typical SOEC operating parameters such as temperature, applied voltage and oxygen partial pressure. Varying from short-circuit of solid oxide fuel cell (SOFC) mode to high voltage of SOEC conditions, the applied voltage sharpens the maximum tensile stress by seven times and raises the minimum permitted oxygen partial pressure at the cathode-electrolyte interface by a factor of 104.5 at most. The analysis results indicate that a ceria-based electrolyte under SOEC conditions denotes a definite trend of collapse at 700 °C even 600 °C, suggesting the inapplicability of doped-ceria electrolyte in SOEC mode.  相似文献   

18.
Application of La0.6Sr0.4Co0.2Fe0.8O3 perovskites cathode in solid oxide fuel cell (SOFC) can benefit from its high electrocatalytic activity at 600-800 °C. However, due to the chemical and mechanical incompatibility between the LSCF cathode and state-of-the-art yttria stabilized zirconia (YSZ) electrolyte, a ceria-based oxide barrier interlayer is usually introduced. In this work, gadolinia doped ceria (GDC) interlayers are prepared by screen printing (SP), electron beam evaporation (EB) and ion assisted deposition (IAD) methods. The microstructures of the GDC interlayers show great dependence on the deposition methods. The 1250 °C-sintered SP interlayer exhibits a porous microstructure. The EB method generates a thin and compact interlayer at a low substrate temperature of 250 °C. With the help of additional energetic argon and oxygen ions bombardment on the deposited species, the IAD method yields the densest GDC interlayer at the same substrate temperature, which leads to the best electrochemical performance of LSFC-based SOFC.  相似文献   

19.
Reversible solid oxide cells (RSOCs) are prone to material thermal property mismatching problems between electrodes and electrolyte, which greatly reduces their energy efficiency and causes irreversible performance degradation. One solution is to develop symmetrical RSOCs (SRSOCs) employing identical electrode materials to effectively address thermal property mismatching related issues and also simplify the manufacturing process. Herein, La1-xSrxFeO3-δ (x = 0–0.20) perovskites are developed and applied as both fuel and air electrode materials for SRSOCs for the first time. The impact of Sr substitution for La on the crystal structures, conductivities and electrochemical performance of LaFeO3 oxides is systematically investigated. It is found, after doping with Sr, overall properties of the LaFeO3 oxides show an obvious improvement, especially for the sample of La0·9Sr0·1FeO3-δ (LSF9010). The peak power density of SRSOCs featuring LSF9010 can stand at 0.575 W cm−2 at 800 °C under the solid oxide fuel cell (SOFC) working model. Under solid oxide electrolysis cell (SOEC) model, the current density stands at 0.84 A cm−2 at 800 °C and 1.5 V. More importantly, the La0·9Sr0·1FeO3-δ symmetrical cell can operate steadily for 128 h under SOFC mode and 25 h under SOFC-SOEC cycle mode, respectively, with almost no performance degradation found. The outcomes of the current study show that the developed LSF9010 may be used as an outstanding multifunctional electrode material in SRSOCs.  相似文献   

20.
The electrochemical performance and stability of (La,Sr)MnO3–Y2O3–ZrO2 (LSM-YSZ) composite oxygen electrodes is studied in detail under solid oxide electrolysis cells (SOECs) operation conditions. The introduction of YSZ electrolyte phase to form an LSM-YSZ composite oxygen electrode substantially enhances the electrocatalytic activity for oxygen oxidation reaction. However, the composite electrode degrades significantly under SOEC mode tested at 500 mA cm−2 and 800 °C. The electrode degradation is characterized by deteriorated surface diffusion and oxygen ion exchange and migration processes. The degradation in electrode performance and stability is most likely associated with the breakup of LSM grains and formation of LSM nanoparticles at the electrode/electrolyte interface, and the formation of nano-patterns on YSZ electrolyte surface under the electrolysis polarization conditions. The results indicate that it is important to minimize the direct contact of LSM particles and YSZ electrolyte at the interface in order to prevent the detrimental effect of the LSM nanoparticle formation on the performance and stability of LSM-based composite oxygen electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号