首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《IEEE network》2001,15(4):46-54
This article presents a broad overview of the architectural and algorithmic aspects involved in deploying an optical cross-connect mesh network, starting from the network design and capacity planning phase to the real-time network operation phase involving dynamic provisioning and restoration of lightpaths and online algorithms for route computation. Frameworks for offline design and capacity planning of optical networks based on projected future lightpath demands are discussed. The essential components of an IP-centric control architecture for dynamic provisioning and restoration of lightpaths in optical networks are outlined. These include neighbor discovery, topology discovery, route computation, lightpath establishment, and lightpath restoration. Online algorithms for route computation of unprotected, 1+1 protected and mesh-restored lightpaths are discussed in both the centralized and distributed scenarios  相似文献   

2.
The need for on‐demand provisioning of wavelength‐routed channels with service‐differentiated offerings within the transport layer has become more essential because of the recent emergence of high bit rate Internet protocol (IP) network applications. Diverse optical transport network architectures have been proposed to achieve the above requirements. This approach is determined by fundamental advances in wavelength division multiplexing (WDM) technologies. Because of the availability of ultra long‐reach transport and all‐optical switching, the deployment of all‐optical networks has been made possible. The concurrent transmission of multiple streams of data with the assistance of special properties of fiber optics is called WDM. The WDM network provides the capability of transferring huge amounts of data at high speeds by the users over large distances. There are several network applications that require the support of QoS multicast, such as multimedia conferencing systems, video‐on‐demand systems, real‐time control systems, etc. In a WDM network, the route decision and wavelength assignment of lightpath connections are based mainly on the routing and wavelength assignment (RWA). The multicast RWA's task is to maximize the number of multicast groups admitted or minimize the call‐blocking probability. The dynamic traffic‐grooming problem in wavelength‐routed networks is generally a two‐layered routing problem in which traffic connections are routed over lightpaths in the virtual topology layer and lightpaths are routed over physical links in the physical topology layer. In this paper, a multicast RWA protocol for capacity improvement in WDM networks is designed. In the wavelength assignment technique, paths from the source node to each of the destination nodes and the potential paths are divided into fragments by the junction nodes and these junction nodes have the wavelength conversion capability. By using the concept of fragmentation and grouping, the proposed scheme can be generally applied for the wavelength assignment of multicast in WDM networks. An optimized dynamic traffic grooming algorithm is also developed to address the traffic grooming problem in mesh networks in the multicast scenario for maximizing the resource utilization and minimizing the blocking probability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper addresses the problem of dynamically provisioning both low-speed unicast and multicast connection requests in mesh-based wavelength division multiplexing (WDM) optical networks. Several routing/provisioning schemes to dynamically provision both unicast and multicast connection requests are presented. In addition, a constraint-based grooming strategy is devised to utilize the overall network resources as efficiently as possible. Based on this strategy, several different sequential multicast grooming heuristics are first presented. Then, we devise a hybrid grooming approach and combine it with sequential approaches to achieve a grooming scheme that is biased toward serving multicast traffic demands in comparison with all other sequential grooming approaches. To achieve our objective, we decompose the problem into four subproblems: 1) routing problem; 2) light-tree-based logical-topology-design problem; 3) provisioning problem; and 4) traffic-grooming problem. The simulation results of the proposed schemes are compared with each other and with those of conventional nongrooming approaches. To the best of our knowledge, this is the first detailed paper to address and examine the problem of grooming dynamic multicast traffic demands.  相似文献   

4.
The bandwidth of a wavelength channel in WDM optical networks is very high compared to the user’s requirements for various applications. Therefore, there is a scope for better utilization of channel bandwidth by traffic grooming, in which several user’s channels are multiplexed for transmission over a single channel. Several research works have been reported on traffic grooming routing and wavelength assignment (GRWA) for static and dynamic traffic pattern under centralized environment. Distributed dynamic grooming routing and wavelength assignment (DDGRWA) is a new and quite unexplored area in WDM optical mesh networks. This article introduces the concept of distributed traffic grooming in WDM mesh networks which also includes virtual topology construction, reconfiguration, routing and wavelength assignment in the distributed environment assuming incoming traffic to be dynamic in nature. We have also presented simulation results of our algorithm on dynamically generated traffic under various network topologies.  相似文献   

5.
In this work, we study dynamic provisioning of multicast sessions in a wavelength-routed sparse splitting capable WDM network with an arbitrary mesh topology where the network consists of nodes with full, partial, or no wavelength conversion capabilities and a node can be a tap-and-continue (TaC) node or a splitting and delivery (SaD) node. The objectives are to minimize the network resources in terms of wavelength-links used by each session and to reduce the multicast session blocking probability. The problem is to route the multicast session from each source to the members of every multicast session, and to assign an appropriate wavelength to each link used by the session. We propose an efficient online algorithm for dynamic multicast session provisioning. To evaluate the proposed algorithm, we apply the integer linear programming (ILP) optimization tool on a per multicast session basis to solve off-line the optimal routing and wavelength assignment given a multicast session and the current network topology as well as its residual network resource information. We formulate the per session multicast routing and wavelength assignment problem as an ILP. With this ILP formulation, the multicast session blocking probability or success probability can then be estimated based on solving a series of ILPs off-line. We have evaluated the effectiveness of the proposed online algorithm via simulation in terms of session blocking probability and network resources used by a session. Simulation results indicate that our proposed computationally efficient online algorithm performs well even when a fraction of the nodes are SaD nodes.  相似文献   

6.
波分复用技术的开发应用及网络业务信息的多样化促进了多播技术的应用和发展.由于网络中波长带宽与节点间业务信息需求之间的巨大反差,使流量疏导成为必要,以节约网络资源和成本.但多播的出现使流量疏导算法变得更复杂多样.本文提出了对多播格状网络中的静态流量进行有效疏导的一种启发性算法,并取得较为优化的结果.  相似文献   

7.
In this article we investigate the problem of efficiently provisioning connections of different bandwidth granularities in a heterogeneous WDM mesh network through dynamic traffic grooming schemes under traffic engineering principles. Due to the huge amount of traffic a WDM backbone network can support and the large geographic area it can cover, constructing and upgrading such an optical WDM network can be costly. Hence, it is extremely important for network operators to apply traffic engineering strategies to cost-effectively support different bandwidth granularity services using only the appropriate amount of network resources. This requires an optical WDM network to have multigranularity switching capability, and such a network tends to be a multivendor heterogeneous network. However, WDM network heterogeneity increases the difficulty and challenge of efficient traffic provisioning. In this article we present different TE issues that need to be carefully considered in such an optical WDM network, and propose possible solutions and extensions for the generalized multiprotocol label switching optical network control plane. We extend an existing generic graph model to perform efficient traffic grooming and achieve different TE objectives through simple shortest path computation algorithms. We show that our approach is very practical and very suitable for traffic engineering in a heterogeneous multigranularity optical WDM mesh network.  相似文献   

8.
In WDM optical networks, lightpath provisioning for static, incremental and dynamic traffic model has been widely investigated. However, Internet connectivity services are increasingly showing a new kind of traffic type in the context of optical networks, i.e., sliding scheduled traffic, which does not have a rigid deadline and allows flexible sliding within a large time window. This new traffic type offers opportunity of more efficiently utilizing network resources to accommodate more traffic, and poses new challenges of exploiting the flexibility of scheduling time. In this paper, we formulate the static sliding scheduled lightpath demand (SSLD) provisioning problem as a mixed partition coloring model in which routing and wavelength assignment are conducted simultaneously in compliance with the allowed time window of each request. Then, we propose a novel one-step heuristic algorithm named as maximum conflict degree first conflict reducing (MCDF-CR) to solve the SSLD provisioning problem based on mixed partition coloring model. Simulation results show that our approach can improve wavelengths utilization compared to previous heuristics.  相似文献   

9.
As the number of wavelengths in a single optical fiber increases, so does the number of ports needed for wavelength switching in optical cross-connects (OXCs), which may significantly increase the cost and difficulty associated with controlling large OXCs. Waveband switching (WBS) treats several wavelengths as a bundle that is switched through a single port if they share the same switch route, so that the number of ports needed can be reduced. On the other hand, light-trails in wavelength division multiplexing (WDM) optical networks allow intermediate nodes on established optical paths to access the data paths whereas light-paths only allow two end nodes to access the data paths. Therefore, light-trails offer significantly better flexibility for service provisioning and traffic grooming. In this article, we study service provisioning using light-trails in WDM optical networks with the WBS capability under a static traffic model. For comparison, integer linear programs are formulated for establishing light-trails with and without WBS. Numerical studies show that in certain cases, service provisioning with WBS in light-trail networks can reduce the number of ports needed while providing a more flexible sub-wavelength service provisioning capability. However, contrary to intuition, in most cases applying the WBS technique requires more ports in OXCs in light-trail networks. This study provides insights into the network design problem that applies the WBS technology to light-trail based optical networks.  相似文献   

10.
Optical networks with DWDM (Dense Wavelength Division Multiplex) can provide multiple data channels to supply high speed, high capacity to perform bandwidth-intensive multicast transmission service. Light-tree is a popular technique applied to support point-to-multipoint multicast services. Any failure during a multicast session would cause severe service loss or disruptions, especially when the faults occur near the source node. A novel ring-based local fault recovery mechanism, Multiple Ring-based Local Restoration (MRLR), for point-to-multipoint multicast traffic based on the minimum spanning tree (MST) in WDM mesh networks is proposed in this article. The MRLR mechanism dismembers the multicast tree into several disjoint segment-blocks (sub-trees) and reserves preplanned spare capacity to set up multiple protection rings in each segment-block for providing rapid local recovery. The MRLR scheme outperforms other methodologies in terms of the blocking probability, recovery time, and average hop count of protection path per session for different network topologies.  相似文献   

11.
In this article, we consider the problem of traffic grooming in optical wavelength division multiplexed (WDM) mesh networks under static traffic conditions. The objective of this work is to minimize the network cost and in particular, the electronic port costs incurred for meeting a given performance objective. In earlier work, we have shown the benefits of limited grooming switch architectures, where only a subset of wavelengths in a network are equipped with expensive SONET Add Drop Multiplexers (SADM) that provide the grooming functionality. In this work, we also consider the wavelength conversion capability of such groomers. This can be achieved using a digital cross-connect (DCS) in the grooming switch to switch low-speed connections between the SADMs (and hence, between wavelengths). The grooming switch thus avoids the need for expensive optical wavelength converters. Based on these observations, we propose a limited conversion-based grooming architecture for optical WDM mesh networks. The local ports at every node in this architecture can be one of three types: an add-drop port, a grooming port that allows wavelength conversion or a grooming port that does not allow wavelength conversion. The problem studied is: given a static traffic model, where should the different ports be placed in a network? We formulate this as an optimization problem using an Integer Linear Programing (ILP) and present numerical results for the same. We also present a heuristic-based approach to solve the problem for larger networks.  相似文献   

12.
The advances in wavelength division multiplexing (WDM) technology are expected to facilitate bandwidth-intensive multicast application by establishing a light-tree, which regards the source node as the root, and involves all the destination nodes. The light-tree is sensitive to failures, e.g., a single fiber cut may disrupt the transmission of information to several destination nodes. Thus, it is imperative to protect multicast sessions. In this work, we investigate the problem of protecting dynamic multicast sessions in mesh WDM networks against single link failures. Our objectives are to minimize the usage of network resources in terms of wavelength links for provisioning survivable multicast session, and to reduce the multicast session blocking probability. We propose two efficient multicast session protecting algorithms, called Optimal Path Pair based Removing Residual Links (OPP-RRL) and Source Leaf Path based Avoiding Residual Links (SLP-ARL), which try to reduce the usage of network resource by removing or avoiding residual links in the topology consisting of light-tree and its backup paths. To evaluate the proposed algorithms, we apply Integer Linear Programming (ILP) to generate an optimal solution. We also compare the proposed algorithms with existing algorithms through simulation. Simulation results indicate that the two proposed algorithms have better performance than other existing algorithms in terms of wavelength links required and network blocking probability. Furthermore, the solutions generated by the two proposed algorithms are quite close to the solutions generated by ILP in terms of the number of wavelength links required, when the network size is small.  相似文献   

13.
Efficient network provisioning mechanisms that support service differentiation are essential to the realization of the Differentiated Services (DiffServ) Internet. Building on our prior work on edge provisioning, we propose a set of efficient dynamic node and core provisioning algorithms for interior nodes and core networks, respectively. The node provisioning algorithm prevents transient violations of service level agreements (SLA) by predicting the onset of service level violations based on a multiclass virtual queue measurement technique, and by automatically adjusting the service weights of weighted fair queueing schedulers at core routers. Persistent service level violations are reported to the core provisioning algorithm, which dimensions traffic aggregates at the network ingress edge. The core provisioning algorithm is designed to address the difficult problem of provisioning DiffServ traffic aggregates (i.e., rate-control can only be exerted at the root of any traffic distribution tree) by taking into account fairness issues not only across different traffic aggregates but also within the same aggregate whose packets take different routes through a core IP network. We demonstrate through analysis and simulation that the proposed dynamic provisioning model is superior to static provisioning for DiffServ in providing quantitative delay bounds with differentiated loss across per-aggregate service classes under persistent congestion and device failure conditions when observed in core networks.  相似文献   

14.
This article describes an approach to the design of control planes for optical crossconnects which leverages existing control plane techniques developed for MPLS traffic engineering. The proposed approach combines recent advances in MPLS traffic engineering control plane constructs with OXC technology to provide a framework for real-time provisioning of optical channels, foster development and deployment of a new class of OXCs, and allow the use of uniform semantics for network management and operations control in hybrid networks consisting of OXCs and label switching routers. The proposed approach is particularly advantageous for OXCs intended for data-centric optical internetworking systems  相似文献   

15.
The article first presents a broad overview of the fault management mechanisms involved in deploying a survivable optical mesh network which employs optical crossconnects. We review various protection and restoration schemes, primary and back-up route computation methods, shareability optimization, and dynamic restoration. We then describe different parameters that can measure the quality of service provided by a WDM mesh network to upper protocol layers (e.g., IP network backbones, ATM network backbones, leased lines, virtual private networks), such as service availability, service reliability, restoration time, and service restorability. We review these concepts, the factors that affect them, and how to improve them. In particular, we present a framework for cost-effective availability-aware connection provisioning to provide differentiated services in WDM mesh networks. Through the framework, the more realistic scenario of multiple near-simultaneous failures can be handled. In addition, the emerging problem of protecting low-speed connections of different bandwidth granularities is also reviewed.  相似文献   

16.
Intelligent optical networking for multilayer survivability   总被引:6,自引:0,他引:6  
In recent years, telecommunication networks have faced explosive (IP) traffic growth. As traffic keeps growing, network reliability gains more and more importance. This article investigates to which extent switched connections and fast connection provisioning, typical for intelligent optical networks (IONs), can be used to provide resilience in an IP-over-optical multilayer network scenario. This solution, based on transport network flexibility, is compared with more traditional static multilayer resilience schemes in terms of cost (capacity) requirements and operational (dis)advantages  相似文献   

17.
We consider the realization of traffic-oblivious routing in IP-over-optical networks where routers are interconnected over a switched optical backbone. The traffic-oblivious routing we consider is a scheme where incoming traffic is first distributed in a preset manner to a set of intermediate nodes. The traffic is then routed from the intermediate nodes to the final destination. This splitting of the routing into two phases simplifies network configuration significantly. In implementing this scheme, the first and second phase paths are realized at the optical layer with router packet grooming at a single intermediate node only. Given this unreliability of routers, we consider how two-phase routing in IP-over-optical networks can be made resilient against router node failures. We propose two different schemes for provisioning the optical layer to handle router node failures-one that is failure node independent and static, and the other that is failure node dependent and dynamic We develop linear programming formulations for both schemes and a fast combinatorial algorithm for the second scheme so as to maximize network throughput. In each case, we determine (i) the optimal distribution of traffic to various intermediate routers for both normal (no-failure) and failure conditions, and (ii) provisioning of optical layer circuits to provide the needed inter-router links. We evaluate the performance of the two router failure protection schemes and compare it with that of unprotected routing  相似文献   

18.
Dynamic traffic is becoming important in WDM networks. In the transition towards full dynamic traffic, WDM networks optimized for a specific set of static connections will most likely also be used to support on-demand lightpath provisioning. Our paper investigates the issue of routing of dynamic connections in WDM networks which are also loaded with high-priority protected static connections. By discrete-event simulation we compare various routing strategies in terms of blocking probability and we propose a new heuristic algorithm based on an occupancy cost function which takes several possible causes of blocking into account. The behavior of this algorithm is tested in well-known case-study mesh networks, with and without wavelength conversion. Moreover, Poissonian and non-Poissonian dynamic traffics are considered.  相似文献   

19.
The increase of multimedia service requirements results in the growing popularity of the multicast in Wavelength-Division Multiplexing (WDM) optical mesh networks. Multicast fault tolerance in WDM optical mesh networks is an important issue because failures caused by the traffic carried in WDM optical mesh networks may lead to huge data loss. Previous works have proposed multicast protection algorithms to address the single-fiber link failure dominant in current optical mesh networks. However, these existing algorithms are all mainly based on path protection or segment protection, which may lead to long restoration times and complicated protection switching procedures. This paper therefore proposes a new heuristic algorithm, called Enhanced Multicast Hamiltonian Cycle Protection (EMHCP), in which all working light-trees of multicast demands can be protected by a Hamiltonian cycle in the network. For each multicast demand, EMHCP computes a least-cost light-tree based on the presented link-cost function that considers load balancing and proper straddling link selection so that backup wavelengths on the Hamiltonian cycle can be reduced. Simulation results show that EMHCP can obtain significant performance improvement compared with the conventional algorithm.  相似文献   

20.
Most existing algorithms for the problem of optical signal splitter placement or multicast splitting-capable node placement in a WDM network are based on the performance of attempting a large set of randomly generated multicast sessions in the network. Experiments show that placement of multicast capable nodes based on their importance for routing one set of multicast sessions may not be a right choice for another set of multicast sessions. In this work, we propose placement algorithms that are based on network topology and the relative importance of a node in routing multicast sessions, which is measured by our proposed metrics. Since a network topology is fixed once given, the proposed algorithms are essentially network traffic independent. We evaluate the proposed placement algorithms given static sets of multicast sessions as well as under dynamic traffic conditions, which are routed using our splitter constrained multicast routing algorithm. Our results show that the proposed algorithms perform better, compared to existing algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号