首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The gene encoding the 12-kDa extrinsic protein of photosystem II from Synechocystis sp. PCC 6803 was cloned based on N-terminal sequence of the mature protein. This gene, named psbU, encodes a polypeptide of 131 residues, the first 36 residues of which were absent in the mature protein and thus served as a transit peptide required for its transport into the thylakoid lumen. A psbU gene deletion mutant grew photoautotrophically in normal BG11 medium at almost the same rate as that of the wild type strain. This mutant, however, grew apparently slower than the wild type did upon depletion of Ca2+ or Cl- from the growth medium. Photosystem II oxygen evolution decreased to 81% in the mutant as compared with that in the wild type, and the thermoluminescence B- and Q-bands shifted to higher temperatures accompanied by an increase in the Q-band intensity. These results indicate that the 12-kDa protein is not essential for oxygen evolution but may play a role in optimizing the ion (Ca2+ and Cl-) environment and maintaining a functional structure of the cyanobacterial oxygen-evolving complex. In addition, a double deletion mutant lacking cytochrome c-550 and the 12-kDa protein grew photoautotrophically with a phenotype identical to that of the single deletion mutant of cytochrome c-550. This supports our previous biochemical results that the 12-kDa protein cannot bind to photosystem II in the absence of cytochrome c-550 (Shen, J.-R., and Inoue, Y. (1993) Biochemistry 32, 1825-1832).  相似文献   

3.
The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 has two putative pathways for ammonium assimilation: the glutamine synthetase-glutamate synthase cycle, which is the main one and is finely regulated by the nitrogen source; and a high NADP-dependent glutamate dehydrogenase activity (NADP-GDH) whose contribution to glutamate synthesis is uncertain. To investigate the role of the latter, we used two engineered mutants, one lacking and another overproducing NADP-GDH. No major disturbances in the regulation of nitrogen-assimilating enzymes or in amino acids pools were detected in the null mutant, but phycobiline content, a sensitive indicator of the nutritional state of cyanobacterial cells, was significantly reduced, indicating that NADP-GDH plays an auxiliary role in ammonium assimilation. This effect was already prominent in the initial phase of growth, although differences in growth rate between the wild type and the mutants were observed at this stage only at low light intensities. However, the null mutant was unable to sustain growth at the late stage of the culture at the point when the wild type showed the maximum NADP-GDH activity, and died faster in ammonium-containing medium. Overexpression of NADP-GDH improved culture proliferation under moderate ammonium concentrations. Competition experiments between the wild type and the null mutant confirmed that the presence of NADP-GDH confers a selective advantage to Synechocystis sp. strain PCC 6803 in late stages of growth.  相似文献   

4.
A mutant strain of the cyanobacterium Synechocystis PCC 6803, called PAL, (PC-, delta apcAB, delta apcE), lacking phycocyanin, allophycocyanin and the core-membrane linker (Lcm), was constructed. The strain was characterized by absorption and fluorescence spectroscopy. The mutant compensates for the absence of the major PS II antenna by increasing its PS II/PS I ratio. It is stable and grows well albeit more slowly than wild type.  相似文献   

5.
6.
The process of ferredoxin reduction by photosystem I has been extensively investigated by flash-absorption spectroscopy in psaD and psaE deleted mutants from Synechocystis sp. PCC 6803. In both mutants, the dissociation constant for the photosystem I/ferredoxin complex at pH 8 is considerably increased as compared to the wild type: approximately 25- and 100-fold increases are found for PsaD-less and PsaE-less photosystem I, respectively. However, at high ferredoxin concentrations, submicrosecond and microsecond kinetics of electron transfer similar to that observed in the wild type are present in both mutants. The presence of these fast kinetic components indicates that the relative positions of ferredoxin and of the terminal photosystem I acceptor are not significantly disturbed by the absence of either PsaD or PsaE. The second-order rate constant of ferredoxin reduction is lowered 10- and 2-fold for PsaD-less and PsaE-less photosystem I, respectively. Assuming a simple binding equilibrium between photosystem I and ferredoxin, PsaD appears to be important for the guiding of ferredoxin to its binding site (main effect on the association rate) whereas PsaE seems to control the photosystem I/ferredoxin complex lifetime (main effect on the dissociation rate). The properties of electron transfer from photosystem I to ferredoxin were also studied at pH 5. 8. In the psaE deleted mutant as in the wild type, the change of pH from 8 to 5.8 induces a 10-fold increase in affinity of ferredoxin for photosystem I. In the absence of PsaD, this pH effect is not observed, in favor of this subunit being mostly responsible for the low pH increased affinity.  相似文献   

7.
Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL- mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL- strain, greening occurred at the same rate at two different light intensities (5 and 50 microE m-2 s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding 'chelator' protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.  相似文献   

8.
Chlorophyll--binding protein CP43 and cytochrome b559, encoded by psbC and psbE/F genes, are the components of photosystem II (PS II). Three psbC- and four psbE/F- mutants were isolated from the collection of PS II-deficient mutants of the cyanobacterium Synechocystis sp. 6803. Restoration of photosynthetic activity was achieved by transformation of psbE/F- mutants with cloned psbE/F gene cluster from wild type cells and each of psbC- mutants--with specific part of wild type psbC gene. DNA fragments carrying the mutations were isolated from mutant cells and sequenced. The mutations which affect PS II activity were identified in psbC gene as "frameshift" mutation, stop-codon formation, or as deletion of three nucleotides resulting in loss of one of three Phe residues in position 422-424 of CP43. Sequence of mutant psbE/F genes revealed single mutations resulting in deletion of Phe-36 or substitution of Pro-63 for Leu in alpha-subunit and Val-29 for Phe in beta-subunit of cytochrome b559.  相似文献   

9.
10.
Paternal care enhances male reproductive success in pine engraver beetles   总被引:1,自引:0,他引:1  
His117 of the D2 protein of photosystem II (PS II) is a conserved residue in the second transmembrane region of the protein and has been suggested to bind chlorophyll. Nine site-directed mutations were introduced at residue 117, using both photosystem I (PS I)-containing and PS I-less background strains of the cyanobacterium Synechocystis sp. PCC 6803. Of these nine, four (H117C, H117M, H117N, and H117T) were photoautotrophic in the PS I-containing background. The other mutants (H117F, H117L, H117P, H117R, and H117Y) did not accumulate appreciable amounts of PS II in their thylakoids. The type of residues that can functionally replace His117 support the notion of His117 serving as a chlorophyll ligand. The properties of the H117N and H117T mutants were characterized in more detail. Whereas the properties of the H117N mutant were close to those of wild type, in the H117T mutant the 77-K fluorescence emission spectrum shows a much smaller amplitude at 695 nm than expected on the basis of the amount of PS II that is present. Moreover, in H117T, the amount of light needed to half-saturate O2-evolution rates was twofold higher than in the control strain, and the variable fluorescence yield was quenched. However, O2 evolution rates at saturating light intensity and electron-transport kinetics were normal in the mutant. Also, the radical accessory chlorophyll (Chlz+) formed by donation of an electron to the PS-II reaction center could be generated normally by illumination at low temperature in the H117T mutant. We conclude that the chlorophyll associated with residue 117 of the D2 protein is important for efficient excitation transfer between the proximal antenna and the PS II reaction center. A possible mechanism involving a chlorophyll cation to explain the quenching in the H117T mutant is discussed.  相似文献   

11.
PsbI is a small, integral membrane protein component of photosystem II (PSII), a pigment-protein complex in cyanobacteria, algae and higher plants. To understand the function of this protein, we have isolated the psbI gene from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and determined its nucleotide sequence. Using an antibiotic-resistance cartridge to disrupt and replace the psbI gene, we have created mutants of Synechocystis 6803 that lack the PsbI protein. Analysis of these mutants revealed that absence of the PsbI protein results in a 25-30% loss of PSII activity. However, other PSII polypeptides are present in near wild-type amounts, indicating that no significant destabilization of the PSII complex has occurred. These results contrast with recently reported data indicating that PsbI-deficient mutants of the eukaryotic alga Chlamydomonas reinhardtii are highly light-sensitive and have a significantly lower (80-90%) titer of the PSII complex. In Synechocystis 6803, PsbI-deficient cells appear to be slightly more photosensitive than wild-type cells, suggesting that this protein, while not essential for PSII biogenesis or function, plays a role in the optimization of PSII activity.  相似文献   

12.
13.
The ADC4 mutant of the cyanobacterium Synechocystis sp. PCC 6803 was studied to determine the structural and functional consequences of the absence of PsaD in photosystem I. Isolated ADC4 membranes were shown to be deficient in ferredoxin-mediated NADP(+) reduction, even though charge separation between P700 and FA/FB occurred with high efficiency. Unlike the wild type, FB became preferentially photoreduced when ADC4 membranes were illuminated at 15 K, and the EPR line shapes were relatively broad. Membrane fragments oriented in two dimensions on thin mylar films showed that the g tensor axes of FA- and FB- were identical in the ADC4 and wild type strains, implying that PsaC is oriented similarly on the reaction center. PsaC and the FA/FB iron-sulfur clusters are lost more readily from the ADC4 membranes after treatment with Triton X-100 or chaotropic agents, implying a stabilizing role for PsaD. The specific role of Lys106 of PsaD, which can be crosslinked to Glu93 of ferredoxin (Lelong et al. (1994) J. Biol. Chem. 269, 10034-10039), was probed by site-directed mutagenesis. Chemical cross-linking and protease treatment experiments did not reveal any drastic alterations in the conformation of the mutant PsaD proteins. The EPR spectra of FA and FB in membranes of the Lys106 mutants were similar to those of the wild type. Membranes of all Lys106 mutants showed wild type rates of flavodoxin reduction and flavodoxin-mediated NADP+ reduction, but had 10-54% decrease in the ferredoxin-mediated NADP+ reduction rates. This implies that Lys106 is a dispensable component of the docking site on the reducing side of photosystem I and an ionic interaction between Lys106 of PsaD and Glu93 of ferredoxin is not essential for electron transfer to ferredoxin. These results demonstrate that PsaD serves distinct roles in modulating the EPR spectral characteristics of FA and FB, in stabilizing PsaC on the reaction center, and in facilitating ferredoxin-mediated NADP+ photoreduction on the reducing side of photosystem I.  相似文献   

14.
15.
PsaA and PsaB are homologous integral membrane proteins that form the heterodimeric core of photosystem I. Domain-specific antibodies were generated to examine the topography of PsaA and PsaB. The purified photosystem I complexes from the wild type strain of Synechocystis sp. PCC 6803 were treated with eight proteases to study the accessibility of cleavage sites in PsaA and PsaB. Proteolytic fragments were identified using the information from N-terminal amino acid sequencing, reactivity to antibodies, apparent mass, and specificity of proteases. The extramembrane loops of PsaA and PsaB differed in their accessibility to proteases, which indicated the folded structure of the loops or their shielding by the small subunits of photosystem I. NaI-treated and mutant photosystem I complexes were used to identify the extramembrane loops that were exposed in the absence of specific small subunits. The absence of PsaD exposed additional proteolytic sites in PsaB, whereas the absence of PsaE exposed sites in PsaA. These studies distinguish PsaA and PsaB in the structural model for photosystem I that has been proposed on the basis of x-ray diffraction studies (Krauss, N., Schubert, W.-D., Klukas, O., Fromme, P., Witt, H. T., and Saenger, W. (1996) Nat. Struct. Biol. 3, 965-973). Using osmotically shocked cells for protease treatments, the N terminus of PsaA was determined to be on the n side of the photosynthetic membranes. Based on these data and available published information, we propose a topological model for PsaA and PsaB.  相似文献   

16.
Photosystem II contains two redox-active tyrosines, D and Z. To understand the function of the dark stable tyrosine radical, D+, we have characterized two site-directed mutations at the D tyrosine residue in the transformable cyanobacterium, Synechocystis sp. PCC 6803, through the use of purified photosystem II particles (Noren, G. H., Boerner, R. J., and Barry, B. A. (1991) Biochemistry 30, 3943-3950). In manganese-depleted mutant particles, a light-induced EPR signal is observed. This signal contains a stable component, due to a chlorophyll radical, and an unstable component. The lineshape of the unstable, oxidized component, which we call M+, is obtained by subtraction; it has a lineshape different from tyrosine Z+/D+ and a g value of 2.004. Up to one M+ spin per reaction center can be photooxidized. The characteristic light-induced EPR signal ascribed to Z+ is not detected; under the same conditions, Z+ is detected in control preparations. The M+ radical lineshape is similar to the light-induced photosystem II radical identified in a site-directed mutant in the D1 polypeptide (YF161D1) (Noren, G. H., and Barry, B. A. (1992) Biochemistry 31, 3335-3342). Optical measurements on manganese-depleted photosystem II particles from control and D2 mutant preparations show that charge recombination kinetics between Q-A and an oxidized redox-active component are similar, to within a factor of two, in all three preparations. We conclude that lack of the stable tyrosine D+ alters the structure or redox properties of tyrosine Z in manganese-depleted preparations.  相似文献   

17.
Time-resolved fluorescence and absorption spectroscopy of photosystem I   总被引:1,自引:0,他引:1  
Picosecond fluorescence and femtosecond transient absorption spectroscopy have been used to investigate the primary energy transfer and trapping processes in a photosystem II deletion mutant from the cyanobacterium Synechocystis sp. PCC 6803, which contains active photosystem I reaction centers with approximately 100 chlorophylls per P700. In all experiments, low levels of excitation were used which avoid annihilation processes. Following 590-nm excitation, at room temperature, spectral equilibration is observed in both fluorescence and absorption measurements and is characterized by a time constant of 4-6 ps. The shape of the spectra associated with the equilibration process indicates that long wavelength pigments (pigments with absorption maxima at longer wavelength than that of the primary electron donor, P700) are present and functional at physiological temperatures in this preparation. The overall decay of excitations in the antenna is characterized by a time constant of 24-28 ps, in both fluorescence and absorption measurements. The 24-28-ps process results in the appearance of absorption changes associated with only P700+ formation. Absorption changes associated with the reduction of the primary electron acceptor were not resolved under the experimental conditions used here.  相似文献   

18.
ClpP functions as the proteolytic subunit of the ATP-dependent Clp protease in eubacteria, mammals and plant chloroplasts. We have cloned a clpP gene, designated clpP1, from the cyanobacterium Synechococcus sp. PCC 7942. The monocistronic 591 bp gene codes for a protein 80% similar to one of four putative ClpP proteins in another cyanobacterium, Synechocystis sp. PCC 6803. The constitutive ClpP1 content in Synechococcus cultures was not inducible by high temperatures, but it did rise fivefold with increasing growth light from 50 to 175 micromol photons m(-2) s(-1). A clpP1 inactivation strain (delta clpP1) exhibited slower growth rates, especially at the higher irradiances, and changes in the proportion of the photosynthetic pigments, chlorophyll a and phycocyanin. Many mutant cells (ca. 35%) were also severely elongated, up to 20 times longer than the wild type. The stress phenotype of delta clpP1 when grown at high light was confirmed by the induction of known stress proteins, such as the heat shock protein GroEL and the alternate form of PSII reaction center D1 protein, D1 form 2. ClpP1 content also rose significantly during short-term photoinhibition, but its loss in delta clpP1 did not exacerbate the extent of inactivation of photosynthesis, nor affect the inducible D1 exchange mechanism, indicating ClpP1 is not directly involved in D1 protein turnover.  相似文献   

19.
The Escherichia coli ispB gene encoding octaprenyl diphosphate synthase is responsible for the synthesis of the side chain of isoprenoid quinones. We tried to construct an E. coli ispB-disrupted mutant but could not isolate the chromosomal ispB disrupted mutant unless the ispB gene or its homolog was supplied on a plasmid. The chromosomal ispB disruptants that harbored plasmids carrying the ispB homologs from Haemophilus influenzae and Synechocystis sp. strain PCC6803 produced mainly ubiquinone 7 and ubiquinone 9, respectively. Our results indicate that the function of the ispB gene is essential for normal growth and that this function can be substituted for by homologs of the ispB gene from other organisms that produce distinct forms of ubiquinone.  相似文献   

20.
Thylakoid membranes isolated from the cyanobacterium Synechocystis sp. strain PCC6803 were capable of desaturating the acyl groups in monogalactosyl diacylglycerol. This desaturation reaction required the reduced form of ferredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号