首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the dynamics of quantum correlations of a two-qubit system coupled to an external environment. We have considered both cases: a spin environment and a bosonic environment. In all cases, we have chosen the Bell-diagonal state as the initial state and computed the evolution of quantum correlations in terms of entanglement, quantum discord and trace distance geometric quantum discord. Special attention is paid to the singular quantum phenomena, such as entanglement sudden death, sudden transition and double sudden transitions from classical to quantum decoherence, which all depend on the initial state and the parameters related to the system and the environment. We find the trace distance geometric quantum discord has a good robustness in resisting the spin and bosonic environmental noise.  相似文献   

2.
We employ the concepts of local quantum uncertainty and geometric quantum discord based on the trace norm to investigate the environmental effects on quantum correlations of two bipartite quantum systems. The first one concerns a two-qubit system coupled with two independent bosonic reservoirs. We show that the trace discord exhibits frozen phenomenon contrarily to local quantum uncertainty. The second scenario deals with a two-level system, initially prepared in a separable state, interacting with a quantized electromagnetic radiation. Our results show that there exists an exchange of quantum correlations between the two-level system and its surrounding which is responsible for the revival phenomenon of non-classical correlations.  相似文献   

3.
Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY–Heisenberg model in the presence of spin–orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.  相似文献   

4.
The open quantum systems consisting of coupled and uncoupled asymmetric oscillators are considered with an initial quantum-dot trapped-ion coherent state. The quantum correlations between spatial modes of this trapped ion are examined to find their dependence on the temperature, asymmetric parameter, dissipation coefficient and the magnetic field. It is observed that the discord of the initial state is an increasing function of the asymmetric parameter and the magnetic field. Moreover, in the case of two uncoupled modes, entanglement and discord are decreasing functions of temperature and the dissipation coefficient. However, as the temperature and dissipation coefficient increase, the discord fades out faster. In the case of two coupled modes, as the temperature and dissipation coefficient increase, the sudden death of the entanglement and fade out of the discord happen sooner; moreover, as the magnetic field increases, the entanglement sudden death and the discord fade out time occur sooner. Also, with the increase in the asymmetric parameter, the entanglement sudden death is postponed. In addition, in the asymmetric system, appreciable discord can be created in the temperature range 0–10 K, while appreciable entanglement can be created in the temperature range 0–5 mK. Finally, it is observed that non-monotonic evolution of quantum correlations is due to coupling of modes.  相似文献   

5.
We investigate the thermal quantum discord and classical correlations in a two-qubit Ising model interacting with a site-dependent external magnetic field. Systematic study of all correlations is performed for various values of the system??s temperature, and the magnetic field magnitude and direction on each site. Our results reveal interesting findings as regrowth regions of the classical and quantum correlations. Moreover unexpected bahavior as for example increase of the quantum correlations with the increase of the anisotropy of the applied magnetic fields for specific values of the external parameters is reported. By comparing our quantum discord data with the entanglement of formation, we have concluded that the major source of quantum correlations is the entanglement. Overall, we have found that the independent control of each spin site by external fields is a very practical and robust way of achieving significant quantum discord useful in quantum computation and information proccesses.  相似文献   

6.
In this work, we mainly analyze the dynamics of geometric quantum discord under a common dissipating environment. Our results indicate that geometric quantum discord is generated when the initial state is a product state. The geometric quantum discord increases from zero to a stable value with the increasing time, and the variations of stable values depend on the system size. For different initial product states, geometric quantum discord has some different behaviors in contrast with entanglement. For initial maximally entangled state, it is shown that geometric quantum discord decays with the increasing dissipated time. It is found that for EPR state, entanglement is more robust than geometric quantum discord, which is a sharp contrast to the existing result that quantum discord is more robust than entanglement in noisy environments. However, for GHZ state and W state, geometric quantum discord is more stable than entanglement. By the comparison of quantum discord and entanglement, we find that a common dissipating environment brings complicated effects on quantum correlation, which may deepen our understanding of physical impacts of decohering environment on quantum correlation. In the end, we analyze the effects of collective dephasing noise and rotating noise to a class of two-qubit X states, and we find that quantum correlation is not altered by the collective noises.  相似文献   

7.
We present a thorough investigation of the phenomena of frozen and time-invariant quantum discord for two-qubit systems independently interacting with local reservoirs. Our work takes into account several significant effects present in decoherence models, which have not been yet explored in the context of time-invariant quantum discord, but which in fact must be typically considered in almost all realistic models. Firstly, we study the combined influence of dephasing, dissipation and heating reservoirs at finite temperature. Contrarily to previous claims in the literature, we show the existence of time-invariant discord at high temperature limit in the weak coupling regime and also examine the effect of thermal photons on the dynamical behavior of frozen discord. Secondly, we explore the consequences of having initial correlations between the dephasing reservoirs. We demonstrate in detail how the time-invariant discord is modified depending on the relevant system parameters such as the strength of the initial amount of entanglement between the reservoirs.  相似文献   

8.
We analytically study the dynamic behaviors of quantum correlation measured by three kinds of measures including quantum discord (QD), geometric quantum discord (GQD) and one-norm GQD for a qubit–qutrit system under the influence of dephasing environments with Ohmic-like spectral densities at nonzero temperature. It is shown that the similar evolution behaviors may be obtained for sub-Ohmic and Ohmic reservoirs. By properly choosing the system’s initial states and reservoir temperature, quantum correlation can take on some interesting results, such as the frozen and double sudden transition as well as the “revival” phenomenon, etc. Meanwhile, the remarkable similarities and differences among these correlation measures are also analyzed in detail and some significant results are presented. Our results provide some important information for the application of quantum correlation in hybrid qubit–qutrit systems in quantum information.  相似文献   

9.
We study the dynamics of quantum correlations of qubit–qutrit systems under various decoherent channels. It is shown that the multi-local and local decoherent channels bring different influences for the dynamics of quantum correlations measured by negativity, quantum discord and geometric discord, which depend on the initial state parameters and the properties of the decoherent channels. We put emphasis on the phenomena such as entanglement sudden death, sudden transition between classical and quantum decoherence and stable quantum discord and geometric discord.  相似文献   

10.
Quantum information processing is largely dependent on the robustness of non-classical correlations, such as entanglement and quantum discord. However, all the realistic quantum systems are thermodynamically open and lose their coherence with time through environmental interaction. The time evolution of quantum entanglement, discord, and the respective classical correlation for a single, spin-1/2 particle under spin and energy degrees of freedom, with an initial Werner state, has been investigated in the present study. The present intra-particle system is considered to be easier to produce than its inter-particle counterpart. Experimentally, this type of system may be realized in the well-known Penning trap. The most stable correlation was identified through maximization of a system-specific global objective function. Quantum discord was found to be the most stable, followed by the classical correlation. Moreover, all the correlations were observed to attain highest robustness under initial Bell state, with minimum possible dephasing and decoherence parameters.  相似文献   

11.
Quantum discord of fermionic systems in the relativistic regime, that is, beyond the single-mode approximation (SMA) is investigated. It is shown that quantum discord is amplified for the fermionic system in non-inertial frames irrespective of the choice of state, region and level of mixedness. This ensures that the phenomenon of amplification can actually happen in the relativistic regime. It is seen that quantum discord converges at infinite acceleration limit, which means that it becomes independent of $q_{R}$ (Unruh modes) beyond SMA. This implies that most of the tensor product structures already used in the literature to compute quantum field correlations in relativistic quantum information cannot give rise to physical results. The dynamics of quantum discord is investigated under amplitude damping, depolarizing and flipping channels. The vanishing behavior of quantum discord is seen for higher level of decoherence in the infinite acceleration limit. The depolarizing channel dominantly affects the fermionic quantum discord as compared to the amplitude damping channel. It means that the depolarizing channel has most destructive influence on the discord of the fermionic systems. Moreover, the effect of environment on the discord is much stronger than that of the acceleration of non-inertial frames.  相似文献   

12.
We investigate the dynamics of quantum correlation between two separated qubits trapped in one-dimensional plasmonic waveguide. It is found that for a class of initial states, the quantum discord shows a sudden change phenomenon during the dynamical evolution. Furthermore, we demonstrate that the quantum discord can be enhanced if a proper product of the plasmon wave number and two qubits distance is chosen. Finally, we find that the non-zero quantum discord between two qubits can be created for the states without initial quantum discord during the time evolution of the system.  相似文献   

13.
We investigate the dynamics of geometric measure of quantum discord and negativity as a measure of quantum entanglement for the system under the local non-Hermitian operation. Numerical calculations demonstrate that quantum discord and entanglement as two kinds of typical measures of quantum correlations can exceed respective initial value, and their evolution behaviors appear to violate conventional properties which formulates quantum discord and quantum entanglement are invariants under local operations. Our results show that non-Hermitian operation achieves distinctive effects on enhancement and protection of quantum correlations, which is mostly aroused by the non-Hermiticity and the non-unitarity of the non-Hermitian operation.  相似文献   

14.
Entanglement is crucial for realizing quantum advantages in metrology. However, entanglement has been outcast by discord in order to capture the worst-case sensitivity in quantum metrology to estimate an unknown parameter. In contrast to traditional measures—namely entanglement and discord—there exist noncommutativity-based quantum correlation measures induced by local von Neumann measurements. Such correlations are more comprehensive than entanglement and discord in quantum information processing. In this paper, we investigate the metrological resourcefulness of measurement-based quantum correlations (MbQCs). We provide a lower bound on the minimum precision of the estimation in terms of the MbQC. We show that the MbQC is more resourceful in quantum metrology than entanglement and super quantum discord. For any non-product state, the MbQC gives a metrological insight into the sensitivity of a mixed state toward perturbation caused by a local von Neumann measurement.  相似文献   

15.
We propose “weak one-way deficit” by weak measurements as the generalization of one-way deficit defined for standard projective measurements. The weak one-way deficit for Werner state is obtained analytically. We find that weak one-way deficit is smaller than the standard one-way deficit, which contrasts with a straightforward expectation based on the known fact that super-quantum discord by weak measurement is always larger than the quantum discord defined by projective measurement. On the other hand, by tuning the weak measurement continuously to the projective measurement, both weak one-way deficit and super-quantum discord converge to the same value, which is either the one-way deficit or the quantum discord both quantifying quantum correlation. In this sense, weak measurement does not necessarily capture more quantumness of correlations. We also give the geometry of super-quantum discord of the Bell-diagonal states with explicit geometrical figures. As an application, the dynamic behavior of super-quantum correlation including super-quantum discord and weak one-way deficit under decoherence is investigated. We find that the order relation of the super-quantum correlation and the quantum correlation remained unchanged under the phase flipping channel for the Bell-diagonal states and the Werner states.  相似文献   

16.
We study behavior of quantum discord, a kind of quantum correlation, in systems of dipole–dipole interacting spins in an external magnetic field in the whole temperature range ( \(-\infty ). It was shown that negative temperatures, which are introduced to describe inversions in the population in a finite level system, provide more favorable conditions for emergence of quantum correlations including entanglement. We show that at negative temperature, the correlations become more intense and discord exists between remote spins being in separated states.  相似文献   

17.
Quantum discord quantifies the total non-classical correlations in mixed states. It is the difference between total correlation, measured by quantum mutual information, and the classical correlation. Another step forward towards the quantification of quantum discord was by Daki? et al. (Phys Rev Lett 105:190502, 2010) who introduced the geometric measure of quantum discord (GMQD) and derived an explicit formula for a two-qubit state. Recently, Luo and Fu (Phys Rev Lett 106:120401, 2011) introduced measurement-induced nonlocality (MIN) as a measure of nonlocality for a bipartite quantum system. The dynamics of GMQD is recently considered by Song et al. (arXiv: quant/ph.1203.3356) and Zhang et al. (Eur Phys J D 66:34, 2012) for inertial observers. However, the topic requires due attention in noninertial frames, particularly, from the perspective of MIN. Here I consider $X$ -structured bipartite quantum system in noninertial frames and analyze the decoherence dynamics of GMQD and MIN at finite temperature. The dynamics under the influence of amplitude damping, depolarizing and phase flip channels is discussed. It is worth-noting that initial state entanglement plays an important role in bipartite states. It is possible to distinguish the Bell, Werner and general type initial quantum states using GMQD. Sudden transition in the behaviour of GMQD and MIN occurs depending upon the mean photon number of the local environment. The transition behaviour disappears for larger values of $\bar{n},$ i.e. $\bar{n}>0.3.$ It becomes more prominent, when environmental noise is introduced in the system. In the presence of environmental noise, as we increase the value of acceleration $r$ , GMQD and MIN decay due to Unruh effect. The effect is prominent for the phase flip and amplitude damping channels. However, in case of depolarizing channel, no sudden change in the behaviour of GMQD and MIN is observed. The environmental noise has stronger affect on the dynamics of GMQD and MIN as compared to the Unruh effect. Furthermore, Werner like states are more robust than General type initial states at finite temperature.  相似文献   

18.
Quantum teleportation of an unknown quantum state is one of the few communication tasks which has no classical counterpart. Usually the aim of teleportation is to send an unknown quantum state to a receiver. But is it possible in some way that the receiver’s state has more quantum discord than the sender’s state? We look at a scenario where Alice and Bob share a pure quantum state and Alice has an unknown quantum state. She performs joint measurement on her qubits and channel to prepare Bob’s qubits in a mixed state which has higher quantum discord than hers. We also observe an interesting feature in this scenario, when the quantum discord of Alice’s qubits increases, then the quantum discord of Bob’s prepared qubits decreases. Furthermore, we show that the fidelity of one-qubit quantum teleportation using Bob’s prepared qubits as the channel is higher than using Alice’s qubits.  相似文献   

19.
In this paper, we study thermal quantum correlations as quantum discord and entanglement in bipartite system imposed by external magnetic field with Herring–Flicker coupling, i.e., \(J(R)=1.642 e^{-2 R} R^{5/2}+O(R^{2}e^{-2R})\). The Herring–Flicker coupling strength is the function of R, which is the distance between spins and systems carry XXX Heisenberg interaction. By tuning the coupling distance R, temperature and magnetic field quantum correlations can be scaled in the bipartite system. We find the long sustainable behavior of quantum discord in comparison with entanglement over the coupling distance R. We also investigate the situations, where entanglement totally dies but quantum discord exists in the system.  相似文献   

20.
We introduce a measure of quantum correlations in the N-qubit quantum system which is invariant with respect to the SU(2 N ) group of transformations of this system. This measure is a modification of the quantum discord introduced earlier and is referred to as the unitary or SU(2 N )-invariant discord. Since the evolution of a quantum system is equivalent to the proper unitary transformation, the introduced measure is an integral of motion and is completely defined by eigenvalues of the density matrix. As far as the calculation of the unitary invariant discord is rather complicated computational problem, we propose its modification which may be found in a simpler way. The case N?=?2 is considered in details. In particular, it is shown that the modified SU(4)-invariant discord reaches the maximum value for a pure state. A geometric measure of the unitary invariant discord of an N-qubit state is introduced and a simple formula for this measure is derived, which allows one to consider this measure as a witness of quantum correlations. The relation of the unitary invariant discord with the quantum state transfer along the spin chain is considered. We also compare the modified SU(4)-invariant discord with the geometric measure of SU(4)-invariant discord of the two-qubit systems in the thermal equilibrium states governed by the different Hamiltonians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号