首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
为了利用简单的生产工艺制备性能优异的锂离子电池负极材料,采用电弧熔炼-甩带的工艺制备出铁钒合金条带,再通过氧化还原方法成功制备出纳米多孔铁掺杂钒氧化物(Fe-VO_x)复合材料,对材料物相和结构进行了表征,并且对比分析了在不同还原温度下纳米多孔Fe-VO_x复合材料的电化学性能。结果表明:在还原温度为500℃、5%H_2/Ar混合气氛下,材料电化学性能最优,在电流密度为0.1 A/g下,初始放电比容量为563.4 mA·h/g,在循环100圈后的放电比容量仍能达到441 mA·h/g,循环容量保持率达到78.2%,远大于石墨的理论比容量372 mA·h/g。这说明纳米多孔铁掺杂钒氧化物复合材料能够有效提高锂离子电池的能量密度,并且具有良好的电化学性能。  相似文献   

2.
为改善SnO_2作为锂离子电池负极材料的电化学表现性能,利用溶剂热法制备SnO_2纳米颗粒,通过球磨法将SnO_2与多孔导电碳和石墨烯掺杂制得SnO_2/石墨烯/多孔碳复合材料,并研究了掺杂不同比例多孔碳的复合材料的电化学性能。结果表明:含15.79%多孔碳的SnO_2/石墨烯/多孔碳复合材料性能最好,初始可逆容量达1 221 m Ah·g~(-1);拥有良好的循环稳定性,在200 m A·g~(-1)电流密度下循环50次后,放电容量维持在834 m Ah·g~(-1);在100,200,400,800,1 600 m A·g~(-1)电流密度下,放电容量分别为1 221,1 093,993,796,526 m Ah·g~(-1),表现出良好的倍率性能。适量的多孔碳结合层状石墨烯形成特殊的物理结构,强化了SnO_2在充放电过程中的结构稳定性,进而提高了其电化学循环稳定性;石墨烯/多孔碳复合材料的掺杂提高了锂离子电池负极材料SnO_2的导电性,同时提高了其电化学性能。  相似文献   

3.
稻壳制备锂离子电池多孔硅负极材料   总被引:1,自引:0,他引:1  
以稻壳为原料,采用镁热还原方法制备孔隙和孔壁主要为纳米尺度的多孔硅材料.作为锂离子电池负极材料,在30 m A/g恒流充放下,多孔硅具有首次充电容量为2 387 m Ah/g,50次充放循环后,充电容量保持率为23.3%.考虑到稻壳的资源丰富、廉价易得和可持续利用特点,镁热还原工艺的低成本性以及稻壳制备的多孔硅具有较好的电化学性能,此法有望制备实用的优质锂离子电池多孔硅负极材料.  相似文献   

4.
为了提高锂离子电池的能量密度,利用低温氧化-水热法成功制备了锡/碳复合材料,并采用SEM、TEM、XRD和恒流充放电分析表征锡/碳复合材料的性能.结果表明:利用锡/碳复合材料的协同效应能够提升锂离子电池的容量和循环寿命,当锡/碳复合比为1∶1时,复合材料展现出了最优的循环性能,同时保持高的比容量,在220次循环后,电流密度100 m A/g下,电池比容量为550 m Ah/g,容量保持率达到95%以上,远大于石墨理论比容量372 m Ah/g,说明锡/碳复合材料能够有效提高锂离子电池的能量密度,并具有良好的循环性能.  相似文献   

5.
锂离子电池发展的重要目标之一是高容量的负极材料,而硅材料以其高达4 200 mAh/g的理论比容量成为研究热点;但是硅负极材料有较大的体积效应,从而造成其电化学循环性能的快速下降,限制了其在生产中的应用.本研究以纳米硅与石墨不同比例的掺杂,通过高能球磨与退火处理,表明当硅与石墨比例为2:1时,首次放电比容量可达2 136.4 mAh/g,同时首次的充放电效率为85.5%; 经过35次循环之后,其可逆容量的保持率85.3%,具有良好的电化学性能.硅/石墨复合材料良好的电化学性能,使其在锂离子电池负极材料的生产及应用中具有重要研究价值.  相似文献   

6.
以表面活性剂CTAB为模板,通过水热法及煅烧过程合成了多孔Nb_2O_5微球。对所得产品的表征和电化学性能测试结果表明:合成了正交结构的Nb_2O_5球,且其单分散性能较好,直径为900 nm左右,球上分布有很多孔径为2~70 nm的小孔,形成了独特的多孔结构,该结构增加了材料的比表面积,其比表面积为340 m~2/g。独特的多孔结构和较大的比表面积使得其作为锂离子电池负极材料时表现出优异的电化学性能:首次容量较高,多孔Nb_2O_5球的首次充放电容量分别为297.8和395.9 m A·h·g~(-1);循环性能稳定,在电流密度为20 m A/g下充放电时,第3次循环后的库伦效率几乎达到100%;倍率性能优异,在50,100 m A/g电流密度下,经过20次循环后的容量分别为139.6,117.1 m A·h·g~(-1),容量保持率都为90%以上。  相似文献   

7.
以废旧汽车刹车片为原料,在N2气氛下600~1 000?C热解制得硬炭材料。以酚醛树脂为对比实验,通过热重分析(Thermal gravimetric analysis)、扫描电子显微镜(Scanning electron mcroscope)、X射线衍射仪(X-ray diffraction)、红外光谱(Fourier transform infrared spectroscopy)分析、拉曼光谱(Raman spectroscopy)分析等测试手段对硬炭进行表征,并分别对将2种材料作为锂离子电池负极材料制备的扣式电池进行充放电性能测试。测试结果表明:热解温度对硬炭结构和充放电性能有一定的影响,在600~1 600?C温度范围内,热解碳在1 300?C条件下表现最优充放电性能,可逆容量和库伦效率分别为112.05 m A·h/g和52.31%,倍率和循环容量保持率分别达到87.23%和64.39%;对比酚醛树脂在最佳热解条件1 200?C的充放电数据,即可逆容量和首次库伦效率分别为189.26 m A·h/g和58.45%,倍率和循环的容量保持率分别为51.52%和55.12%。因此,废旧汽车刹车片热解碳在实际应用中具有较好回收价值。  相似文献   

8.
高容量的过渡金属氧化物要想替代目前低容量的商业碳作为锂离子电池负极材料,必须设计解决碎化问题和电导率问题。本文通过热解和水热氧化法合成了N掺杂的碳基Co/Co3O4@C纳米粒子核壳结构复合材料。通过调整水热时间,可以获得结构完整、形态规则、尺寸均匀的产品。其作为锂离子电池电极材料,在0.1A/g恒流循环50次后,放电容量稳定在620 mA·h/g(碳质量分数为56.8%),高于其理论比容量,在2A/g恒流下250次循环后,可逆容量为572 mA·h/g,库仑效率可保持在99.8%左右。这说明具有良好分散性的N掺杂碳基Co/Co3O4@C纳米粒子核壳结构具有优良的结构稳定性和电导率,作为负极材料有希望应用于高容量、大功率的锂离子电池当中。  相似文献   

9.
采用两步高能球磨法制备了一种新的锂离子电池硅基复合负极材料Si1.81Co0.6Cr0.6Zn0.2/MGS.用X射线衍射(XRD)和扫描电镜(SEM)表征了材料的组成和形貌结构.电化学测试表明,Si1.81Co0.6Cr0.6Zn0.2/MGS作锂离子电池负极材料有较好的电化学性能:首次可逆容量为561 mAh.g-1,50个循环后,可逆容量的保持率为91%.Si1.81Co0.6Cr0.6Zn0.2/MGS循环性能的改善归因于电极结构在循环过程中的稳定性.  相似文献   

10.
为了提高TiO_2的导电性和材料的分散性,进而提高材料的倍率性能和循环性能,将二氧化钛与石墨烯复合,通过水热法合成了二氧化钛/石墨烯(TiO_2/rGO)复合材料,并对材料的形貌进行了表征,测试了材料用于锂离子电池的电化学性能.结果表明:与石墨烯复合后材料的比容量和倍率性能均升高,在电流密度为0.1C(C=150 mA/g)下,初始放电容量为374 mAh/g,50周后的放电比容量仍保持在165 mAh/g,循环保持率为44%,远高于同种方法下合成的二氧化钛样品50周后的比容量50 mAh/g和保持率17%.  相似文献   

11.
TiO2-B was synthesized by solid-state reaction. The structures, surface morphologies and electrochemical performances of TiO2-B were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and electrochemical measurement, respectively. The effects of calcining temperature, molar ratio of K2O to TiO2 and calcining time on the characteristics of TiO2-B were investigated. The results show that the calcining time exerts a significant influence on the electrochemical performances of TiO2-B. The TiO2-B is obtained with good crystal structure and suitable size by using K2Ti4O9, which is prepared at 950°C for 24 h under the condition of x(K2O)/x(TiO2)=1:3.5. The TiO2-B delivers all initial discharge capacity of 231.6 mA·h/g. And the rate capacity is 73.2 mA·h/g at 1 675 mA/g, which suggests that TiO2-B is a promising anode material for the lithium ion batteries.  相似文献   

12.
以四水合乙酸镍为原料、硫代乙酰胺为沉淀剂和硫源,采用一步溶剂热法合成了介孔富有的多孔NiS中空亚微球。并采用XRD、FESEM、EDS、TEM、HRTEM、SAED、XPS和氮气吸脱附测试以及循环伏安(CV)、恒流充放电、交流阻抗等进行了材料表征和电化学性能测试。研究结果表明,所合成的NiS为介孔富有的多孔中空亚微球结构,且其尺寸大小较为均匀,壳层较薄。这种独特的多孔中空结构使得其作为超级电容器电池型正极材料时表现出优异的电化学性能:3 A·g~(-1)电流密度下的比容量值为155.4mA·h·g~(-1),20 A·g~(-1)电流密度下的比容量值仍然保持在92.9 mA·h·g~(-1),倍率容量保持率为59.8%,且在5 A·g~(-1)电流密度下5 000次循环后比容量仍可达115.3 mA·h·g~(-1),初始容量保持率为85.0%。  相似文献   

13.
Graphene was produced via a soft chemistry synthetic route for lithium ion battery applications. The sample was characterized by X-ray diffraction, nitrogen adsorption-desorption, field emission scanning electron microscopy and transmission electron microscopy, respectively. The electrochemical performances of graphene as anode material were measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The experimental results showed that the graphene possessed a thin wrinkled paper-like morphology and large specific surface area (342 m2·g?1). The first reversible specific capacity of the graphene was as high as 905 mA·h·g?1 at a current density of 100 mA·g?1. Even at a high current density of 1000 or 2000 mA·g?1, the graphene maintained good cycling stability, indicating that it is a promising anode material for high-performance lithium ion batteries.  相似文献   

14.
A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3·9H2O,LiAc·H2O,NH4H2PO4 and citric acid as raw materials,and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and electrochemical tests.The Fe2P content,morphology and electrochemical performance of LiFePO4/(C+Fe2P) composite depend on the calcination tempera...  相似文献   

15.
The graphite was modified using pitch through dynamical melt-carbonization, and the effects of modification temperature and the amount of pitch on the characteristics of graphite were investigated. The structure and characteristics of the graphite were determined by X-ray diffractometry(XRD), scanning electron microscopy(SEM), particle size analysis and electrochemical measurements. The results show that the modified graphite has a disordered carbon/graphite composite structure, larger average particle diameter, greater tap density, and better electrochemical characteristics than the untreated graphite. The sample coated with 10% pitch dynamical melt-carbonized at 400 ℃ for 3 h and heat-treated at 850 ℃ for 2 h has better electrochemical performances with a reversible capacity of 360.5 mA·h/g, a irreversible capacity of 41.0 mA·h/g, and an initial coulombic efficiency of 89.8% compared with natural graphite and disordered carbon. The cycling stability of the Li/C cell with modified graphite as anodes is improved, and its capacity retention ratio at the 30th cycle is up to 94.37%.  相似文献   

16.
锡、硅负极材料由于具有高的比容量等优点,成为提高锂离子电池能量密度的首选负极材料。首先介绍了目前产业界开发锡、硅负极材料的进展,并从商业化的角度比较了这两类材料在开发工艺及实际使用电性能方面的区别。进一步从基础研发角度重点阐述了不同结构的硅基材料(单质硅、硅氧化物、硅碳复合物及硅合金)的电性能改性研究进展,指出了具有工业化前景的工艺方法。  相似文献   

17.
1 IntroductionRare earth-based hydrogenstorage alloys ofAB5typehave beenthe most major electrode material for small-sizeNi/MHbatteries because of their high discharge capacity,superior highrate capability andfavorable ratio of pricetoperformance. But their electrochemical performances be-come worse when the alloys are applied to large-size Ni/MHbatteries of electric vehicles .Thisfact may be due tothe rising of temperature inside the large batteries causedbythe high electric current of char…  相似文献   

18.
Co3O4/graphite composites were synthesized by precipitation of cobalt oxalate on the surface of graphite and pyrolysis of the precipitate, and the effects of graphite content and calcination temperature on the electrochemical properties of the composites were investigated. The samples were characterized by thermogravimetry and differential thermal analysis (TG/DTA), X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge/discharge measurements. With increasing the graphite content, the reversible capacity of the Co3O4/graphite composites decreases, while cycling stability improves dramatically, and the addition of graphite obviously decreases the average potential of lithium intercalation/deintercalation. The reversible capacity of the composites with 50% graphite rises from 583 to 725 mA·h/g as the calcination temperature increases from 300 to 500 °C, and the Co3O4/graphite composites synthesized at 400 °C show the best cycling stability without capacity loss in the initial 20 cycles. The CV profile of the composite presents two couples of redox peaks, corresponding to the lithium intercalaction/deintercalation for graphite and Co3O4, respectively. EIS studies indicate that the electrochemical impedance decreases with increasing the graphite content.  相似文献   

19.
In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20−x La x Ni10 (x=0, 2) alloys were synthesized by melt-spinning technique. The microstructures of the as-spun alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage properties of the experimental alloys were tested. The results show that no amorphous phase is detected in the as-spun Mg20Ni10 alloy, but the as-spun Mg18La2Ni10 alloy holds a major amorphous phase. As La content increases from 0 to 2, the maximum discharge capacity of the as-spun (20 m/s) alloys rises from 96.5 to 387.1 mA·h/g, and the capacity retaining rate (S 20) at the 20th cycle grows from 31.3% to 71.7%. Melt-spinning engenders an impactful effect on the electrochemical hydrogen storage performances of the alloys. With the increase in the spinning rate from 0 to 30 m/s, the maximum discharge capacity increases from 30.3 to 135.5 mA·h/g for the Mg20Ni10 alloy, and from 197.2 to 406.5 mA·h/g for the Mg18La2Ni10 alloy. The capacity retaining rate (S 20) of the Mg20Ni10 alloy at the 20th cycle slightly falls from 36.7% to 27.1%, but it markedly mounts up from 37.3% to 78.3% for the Mg18La2Ni10 alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号