首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
C_6溶剂油加氢脱硫脱芳工艺研究   总被引:2,自引:0,他引:2  
研究了C6溶剂油加氢脱硫脱芳工艺。加氢精制段采用MC-1为催化剂,吸附脱硫段采用HTZM-1为脱硫剂,反应条件:温度260℃、空速6h-1、压力2.0MPa、氢油体积比100。结果表明:产品中的硫质量分数小于0.5μg/g;加氢脱芳段采用HTB-1H为加氢催化剂,反应条件:温度120℃、空速0.5h-1、压力0.6MPa、氢油体积比100。结果表明:产品中芳烃质量分数小于100μg/g,满足了新的C6溶剂油标准。  相似文献   

2.
以3种不同VGO为原料,在200 mL固定床连续等温加氢试验装置上,考察了反应温度、氢分压、体积空速、氢油体积比等工艺条件对加氢精制催化剂A脱硫反应的影响,同时建立了相应的关联曲线,探讨工艺条件对精制油中硫含量的影响趋势。建立了减压蜡油加氢脱硫宏观动力学模型,对动力学模型进行优化计算和实验验证,结果表明模型具有一定的预测精度。  相似文献   

3.
采用阳极氧化法制备适宜孔容和大比表面积的TiO2纳米管阵列,以其为载体将具有催化加氢活性的金属Mo和Ni负载其表面。通过负载前硼改性、磷修饰等手段制备了具有较大孔径(72.3nm)和比表面积(156m2/g)的催化加氢精制催化剂,并对其进行表征。催化加氢脱硫性能选用5mL固定床小试设备,以孤岛焦化柴油作为原料进行加氢评价。结果表明,压力7MPa,温度360℃,空速1.5h-1,氢油体积比为600∶1的条件下,该柴油产品脱硫率为96.6%,基本达到工业化生产的要求。  相似文献   

4.
采用酸沉淀法制备大孔γ-Al2O3为载体,并用浸渍法制备Ni2P(25%)/γ-A12O3催化剂。BET、XRD、压汞法的分析结果显示:合成大孔γ-Al2O3载体晶型良好,且具有适宜比表面积和孔结构。催化剂经原位还原处理后,以柴油为原料在连续固定反应装置上,考察了催化剂的制备条件及反应条件对催化剂加氢脱硫活性的影响。结果表明:当载体合成温度为80℃,反应pH为8,反应条件为温度360℃、压力4.0MPa、空速1.0h-1、氢烃体积比500∶1时,催化剂的加氢脱硫活性最好,柴油的脱硫率可达98.2%。  相似文献   

5.
Mo-Ni-P纳米自组装Al2O3劣质柴油加氢催化剂脱硫研究   总被引:1,自引:0,他引:1  
制备了以纳米自组装大孔容介孔氧化铝为载体,改性和共浸法制备担载Mo-Ni双金属活性组分的Mo-Ni-P纳米自组装Al2O3柴油加氢脱硫催化剂。通过压汞法和XRD对催化剂进行表征。纳米自组装大孔容介孔氧化铝催化剂Ni-Mo的负载量为w(NiO)=7.69%,w(MoO3)=27.2%,P改性后其质量分数为0.05%。以孤岛焦化柴油为原料,在固定床反应器上评价了催化剂的脱硫反应活性。结果表明,脱硫适宜的反应条件为:反应温度370℃,压力7.5 MPa,氢油体积比700,体积空速1.5 h-1。在此条件下,柴油含硫质量分数可由14 100μg/g降至125μg/g。  相似文献   

6.
制备了多级孔TiO_2-Al_2O_3载体和Ni_2P/TiO_2-Al_2O_3催化剂,将该催化剂与负载Ni_2P/介孔Al_2O_3和Ni_2P/γ-Al_2O_3进行了催化性能对比。分别用正交设计法和单因素考察法,对反应温度、氢油体积比、质量空速和反应压力等工艺条件对反应结果的影响进行了考察,并得出了优化后的工艺条件。结果表明,Ni_2P/TiO_2-Al_2O_3较Ni_2P/γ-Al_2O_3和Ni_2P/介孔Al_2O_3的催化活性和选择性都高;以多级孔Ni_2P/TiO_2-Al_2O_3为催化剂时,萘的转化率和十氢萘选择性受反应压力和温度影响较大,受氢油体积比和空速的影响较小。多级孔Ni_2P/TiO_2-Al_2O_3催化剂在加氢脱萘反应中的最佳反应条件为:反应温度300℃,反应压力4 MPa,氢油体积比500,质量空速1 h-1,此时萘的转化率和十氢萘选择性分别为99.2%和72.0%。  相似文献   

7.
为了优化煤焦油加氢制取燃料油过程中芳烃的加氢饱和反应工艺,选取萘作为煤焦油中芳烃的模型化合物,在固定床加氢反应器上,使用MoNiWP/γ-Al2O3催化剂,探究反应温度、压力、体积空速及氢油体积比对萘的转化率以及四氢萘和十氢萘选择性的影响.研究煤焦油中不同质量分数的二苯并噻吩(S)、喹啉(N)和邻甲酚(O)杂原子的存在对芳烃化合物加氢饱和的影响,并初步考察多种芳烃化合物加氢饱和的效果.结果表明:MoNiWP/γ-Al2O3催化剂在萘的加氢饱和反应中表现出良好的催化活性;反应温度和体积空速对萘加氢反应的影响比较明显,且萘加氢饱和的最佳反应条件为温度320℃,压力4MPa,氢油体积比600∶1以及体积空速2h-1;微量质量分数的S和N对萘的加氢饱和影响不大,但是当S、N质量分数高于0.15%,O质量分数高于0.30%时,萘加氢反应,尤其是第二个苯环的加氢饱和反应都受到明显的抑制;不同种类的芳烃类化合物的加氢饱和反应存在相互影响的现象.因此,建议在煤焦油加氢精制工艺中使用两步加氢,并对原料进行脱酚处理.  相似文献   

8.
改性沸石用于催化裂化汽油加氢改质   总被引:1,自引:1,他引:1  
采用浸渍法分别制备了Ni-Mo-P/HZSM-5,Ni-Co-W/HM和Ni-Zn-La/HM 3种不同催化剂,以抚顺石化公司重油催化裂化汽油为原料,分别考察了微反装置上3种催化剂单独装填、混合装填对催化裂化汽油加氢改质的不同效果。结果表明,相同体积的3种催化刘均匀混合装填表现出较好的加氢异构化、芳构化和脱硫性能。考查了不同工艺条件对催化裂化汽油加氢反应效果的影响。在温度为300℃、液相体积空速为2.5 h-1、氢油体积比为350和反应压力为1.5 MPa的反应条件下,催化裂化汽油烯烃转化率、脱硫率、液相收率分别为41.9%,54.7%和87.6%,而加氢改质后的汽油研究法辛烷值由原来的91.6变为91.8,马达法辛烷值由最初的79.3 上升为79.6,达到了对催化裂化汽油脱硫降烯烃又不损失其辛皖值的预期目的。  相似文献   

9.
以劣质蜡油加氢脱硫、加氢脱氮、加氢脱金属为目标,对3种不同的劣质蜡油进行了加氢处理实验,研究了加氢处理工艺条件对上述反应过程的影响,并探讨了在不同工艺条件下,加氢生成油的性质及质谱组成变化规律。结果表明,加氢脱硫率、脱氮率、脱金属率均随反应温度升高而增加。与原料油相比,加氢生成油具有较低的95%馏出温度和密度,生成油中硫、氮、金属质量分数大幅度降低。  相似文献   

10.
采用两段加氢技术,使碳五馏分油烯烃加氢饱和,通过对一段加氢产品和二段加氢产品分别用碘价和溴价分析研究得出两段加氢工艺各自最佳的工艺条件。实验结果表明,在一段加氢最佳工艺条件:压力为3MPa、反应温度为60℃、空速为2h-1、氢油体积比为300∶1和二段加氢最佳工艺条件:压力为3 MPa、反应温度为160℃、空速为2h-1、氢油体积比为200∶1下加氢试验后碳五馏分碘价由16.3g(I)/100g下降到了0.1g(I)/100g,双烯烃的饱和程度几乎达到100%,溴价由81.4g(Br)/100g下降到2.5g(Br)/100g。  相似文献   

11.
采用NaOH 溶液对商业Hβ分子筛进行碱处理,制备了多级孔结构Hβ分子筛。以多级孔Hβ分子筛 与Al2O3 为复合载体,采用等体积浸渍法制备了多级孔NiWP/Hβ-Al2O3 系列催化剂,利用XRD、BET、TEM 等表 征手段对分子筛以及催化剂的物相结构进行了表征。以催化裂化柴油为原料,在固定床反应器上对催化剂的加氢 脱芳性能进行了评价。结果表明,制备的NiWP/Hβ-Al2O3 催化剂具有较高的加氢脱芳活性,在反应温度为360 ℃、 反应压力8.0MPa、氢油体积比为600∶1、体积空速1.0h-1的条件下,产品的十六烷值由7.21提高到46.96。  相似文献   

12.
通过复分解法合成了3种基于Mo8O4-26阴离子的四烷基铵钼多金属氧酸盐,并将其作为催化剂,质量分数为30%H2O2溶液为氧化剂、1-己基-3-甲基咪唑四氟硼酸盐离子液体([C6MIM]BF4)为萃取剂,用于柴油的催化氧化脱硫。分别考察了催化剂摩尔分数、反应温度、剂油体积比、反应时间、氧化剂用量等条件对模拟油品脱硫率的影响,确定了最优化反应条件,并将其应用于实际油品的脱硫中。结果表明,在60℃反应条件下,反应时间1h,当催化剂摩尔分数为5%、剂油体积比为1∶5、n(氧化剂)/n(硫化物)为6∶1时,该催化氧化-萃取体系对模拟油品(初始含硫质量分数为1 164μg/g)有较高的脱硫率,一次脱硫率可达95%以上。对抚顺石化公司生产的催化裂化柴油(初始含硫质量分数为850μg/g)一次脱硫率约为92%。  相似文献   

13.
在没有任何有机溶剂和卤素的条件下,以质量分数30%的H2O2为氧化剂,Na2WO4·2H2O为催化剂,在酸性离子液体[(CH2)4SO3HMIm]TSO中,将柴油中的噻吩硫氧化为矾类物质,并通过离子液体将其萃取,同时考察了反应温度、反应时间和离子液体用量等因素对氧化脱硫反应的影响,得出最佳反应条件:3mL油样(含硫质量分数为500μg/g),n(离子液体)/n(Na2WO4·2H2O)=40:1,0.7mL双氧水,333K,2h,脱硫率为97.4%。反应结束后,通过简单的倾倒将油样和催化剂分离,重复使用4次,其催化活性基本不变。  相似文献   

14.
采用溶胶-凝胶法制备改性催化剂Cr-Mo/SiO2。通过红外光谱、X射线衍射、比表面和孔隙分析等方法对Cr-Mo/SiO2进行表征,考察Cr-Mo/SiO2用量、H2O2用量、反应温度和反应时间对模型油和直馏柴油氧化脱硫效果的影响。结果表明,各反应条件对模型油氧化脱硫效果均有一定影响,二苯并噻吩较苯并噻吩更易脱除。直馏柴油氧化脱硫正交试验结果显示,各因素对脱硫率的影响大小排序为:反应温度〉H2O2用量〉Cr-Mo/SiO2用量〉反应时间。最佳反应条件下,可使直馏柴油硫含量由994μg/g降至128μg/g,脱硫率达87.11%,油品回收率不低于98%。  相似文献   

15.
采用酸沉淀法制备大孔γ-Al为载体,并用浸渍法制备NiP(25%)/γ-A1催化剂。BET、XRD、压汞法的分析结果显示:合成大孔γ-Al2O3载体晶型良好,且具有适宜比表面积和孔结构。催化剂经原位还原处理后,以柴油为原料在连续固定反应装置上,考察了催化剂的制备条件及反应条件对催化剂加氢脱硫活性的影响。结果表明:当载体合成温度为80℃,反应pH为8,反应条件为温度360℃、压力4.0MPa、空速1.0h-1、氢烃体积比500∶1时,催化剂的加氢脱硫活性最好,柴油的脱硫率可达98.2%。  相似文献   

16.
用H2O2-有机酸氧化脱除柴油中的硫化物   总被引:17,自引:5,他引:12  
通过氧化反应与溶剂萃取分离相结合的方法对辽河直馏柴油氧化脱硫。双氧水与甲酸作为氧化剂反应生成的过氧酸,可以把柴油中的含硫化合物有选择性地氧化成相应的具有很强极性的砜。根据相似相溶原理,使用极性溶剂N,N-二甲基甲酰胺(DMF)将这些砜从柴油中脱除,从而降低油品中的硫含量。考察了反应时间、氧化温度、剂油体积比、超声波等反应条件对脱硫率的影响。结合生产实际,确定了实验室最佳操作条件:反应时间为60min;反应温度为70℃;剂油体积比为1∶10;超声波作用利于氧化脱硫。结果表明,在最佳实验条件下,脱硫率可达67.5%,基本满足国家标准的要求。  相似文献   

17.
采用程序升温还原法(TPR)制备Pt/HZSM-5催化剂,并进行XRD表征。以不同催化裂化汽油馏分和正庚烷为原料,在小型连续固定床反应装置上考察了改性HZSM-5分子筛在一定条件下的芳构化性能。结果表明,当Pt的浸渍质量分数为0.5%,压力为1.5 MPa,温度450 ℃,氢油体积比为800∶1,体积空速为2.0 h-1时,Pt/HZSM-5催化剂对正庚烷的芳构化活性和稳定性最佳;当压力为1.0 MPa,温度为450 ℃,氢油体积比为800∶1,体积空速为2.0 h-1时,Pt/HZSM-5催化剂对催化裂化汽油50~100 ℃馏分和80~120 ℃馏分表现出较好的芳构化性能。  相似文献   

18.
采用二次纳米自组装方法制备出具有大孔道的催化剂0106、1227,两种纳米自组装催化剂在30~100 nm孔径分布分别占11%、28%。纳米自组装催化剂具有低堆积密度和高金属含量等特点。在10 mL固定床微型反应器中,以镇海炼化的催化裂化柴油为原料,在温度360℃、压力7 M Pa、氢油体积比为600∶1、体积空速为1.5 h-1条件下,考察了两种纳米自组装催化剂的初活性评价,并与现有工业催化剂作对比。结果表明,两种纳米自组装催化剂0106、1227可使催化裂化柴油的含硫质量分数从12400μg/g分别最低降到483、283μg/g ,最高脱硫率分别为96.10%、97.71%;将含氮质量分数从1507μg/g分别最低降到35.7、14.0μg/g ,最高脱氮率分别为97.63%和99.00%;其最高芳烃饱和率分别为67.99%和68.88%;而参比催化剂仅可使催化裂化柴油的含硫质量分数从12400μg/g最低降到537μg/g ,最高脱硫率为94.57%;将含氮质量分数从1507μg/g最低降到64.6μg/g ,最高脱氮率为95.54%;其最高芳烃饱和率为65.65%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号