首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal changes in the contents and compositions of n-alkanes and n-methyl ketones have been studied in typical soddy-podzolic soils (Albic Retisols (Ochric)) under lime forests in the Losiny Ostrov National Park, Moscow. In the humus horizons, the reserves (about 370 mg/m2) of odd n-alkanes with the chain length of C25–C35—the biomarkers of terrestrial vegetation—are 4–5 times below their amount entering with the leaf falloff in autumn. A noticeable contribution of microbial biomass hydrocarbons to the lipid fraction in the AY and AYel horizons manifests itself in the increased fraction of odd and medium-chain (<C25) homologues (OEP = 4–6, LSR = 5–7) in the spectrum of n-alkanes. The lowest content of methyl ketones and odd n-alkanes was observed immediately after the winter period (OEP = 22, A/K = 21–170). In the EL and BT horizons, the n-alkane fraction of organic matter and the relative content of high molecularweight n-alkanes more resistant to microbial destruction (C33, C35) increases by 3–4 times in comparison with that in the abovelying horizons, and the type of distribution of n-alkanes by the carbon chain length changes: the dominance of odd homologues is absent; in the EL horizon, OEP = 1.  相似文献   

2.
Alkaline phosphomonoesterase (ALP) mainly originates from soil microbial secretion and plays a crucial role in the turnover of soil phosphorus (P). To examine the response of ALP-encoding microbial communities (analysed for the biomarker of the ALP gene, phoD) of soils and derivative soil fractions to different fertilisation regimes, soil samples were collected from a long-term experimental field (over 35 years). The different organic P (Po) pools of soil fractions and the ALP activity of soil were also determined. Compared with chemical-only fertilised soils, the ALP activity was 232–815% higher in organic-amended soils, and the highest enzyme activity was observed in the organic-only fertilised treatment. The abundance of the phoD gene harbouring in soil fractions, determined by quantitative PCR (qPCR), was affected by different fertilisations. The highest abundance of the phoD gene was generally detected in the 2–63-μm-sized fraction (silt), but most phoD-encoding microbial species were associated to the 0.1–2-μm-sized fraction (clay) in the chemical-only fertilised soil. The contents of labile Po (LPo), moderately labile Po (MLPo) and fulvic acid-associated Po (FAPo) were significantly correlated with the phoD gene abundance, whereas only LPo content was significantly correlated with the ALP activity. The dominant phoD-encoding phylas were Actinobacteria and Proteobacteria, according to a high-throughput sequencing. Bradyrhizobium, a N2-fixer identified as a phoD-encoding genus, showed the highest abundance in fertilised soils. The abundance of Bradyrhizobium, Streptomyces, Modestobacter, Lysobacter, Frankia and Burkholderia increased with the organic-only amendment and was significantly correlated with the ALP activity. According to structure equation models (SEM), pH and LPo content significantly and directly affected the ALP activity; the soil organic C (Corg) content was related to composition and abundances of phoD-harbouring microbial communities; since both microbial properties were correlated to the ALP activity, the Corg content was indirectly related to the ALP activity. In conclusion, soil management practices can be used to optimise the contents of soil available P and the organic P with regulation of soil ALP activity and the community composition of corresponding microbes.  相似文献   

3.
New methodological approaches and an algorithm for the quantitative assessment of accumulating a substance by a plant (C p ) with due regard for its concentration in the soil (C n ) are proposed. The first approach is the approximation of concentration curves by the functions C p = f(C n ) and their parameters. The second one is the standardization of the coefficients of biological sorption (K b ) of a substance upon its stable concentration in the soil using the function K b = f(C n ). As compared to the variation-statistical values of the mean and extreme concentrations, or the coefficients K b , the proposed parameters are characterized by a higher accuracy and sensitivity. They may be successfully used for quantitative studies of the mechanism and the intensity of the absorption of substances by plants, for the prediction of the accumulation of substances in the trophic chain, and the assessment of soil self-purification (detoxification) and comparative ratings.  相似文献   

4.

Purpose

We attempt to describe the cover and management (C) factor more comprehensively through the use of a simple and efficient method.

Materials and methods

We measure the coverage of each vegetation layer and C factor for 152 sampled plots in the Ansai watershed. We propose four stratified coverage indices (green coverage (V G), total coverage (V T), probability coverage (V P), weight coverage (V W)), derive green and yellow vegetation indices from Landsat 8 OLI images to reflect green and residue cover, and construct and validate C factor estimation models from stratified coverage and remote sensing indices, respectively.

Results and discussion

(1) V T and V P present C factor estimation advantages for grassland and shrub land. V W can better illustrate the C factor due to the relatively complete spatial structuring of woodland and orchard land. For cropland, four stratified coverage indices present the same estimation capacities for the C factor. Except for cropland and grassland, the estimation capabilities of V G are relatively low because the residue layer is ignored. (2) The C factor is more sensitive to yellow vegetation indices, which indicates that senescent fractional cover and litter are important and cannot be ignored. The linear and non-linear models can explain 56.6 and 61.8% of C factor variation, respectively, and the linear model is more accurate than the non-linear model. (3) Compared to traditional indices (projective coverage and single remote sensing indices), stratified coverage indices and a combination of several remote sensing indices can estimate the C factor more effectively.

Conclusions

At the field scale, the C value estimation model can be selected according to the land-use type. At the watershed and regional scales, a linear model is recommended for C factor estimation.
  相似文献   

5.
The contamination of heavy loamy chernozem by iron, sodium, magnesium, calcium, and hydrogen chlorides (2% of soil mass) decreases soil moisture content (W, percent of soil mass) in the interval of the soil moisture pressure (Р) from 0.0 to–0.6 atm, which indicate soil degradation. In a range of P from–0.2 to–0.6 atm, there is a close correlation between the logarithm of Р module (log|P|) and W and, therefore, a regression relationship log|P W | = |P 0|–kW, where |P 0| and k are empirically determined parameters. This relationship is similar to the Landau–Deryagin law. The parameters |P 0| and k are also in a close correlation, which is described by the regression equation |P 0| = 29.3k–0.557. At chernozem contamination by chlorides, the |P 0| and k parameters become smaller, and so they may be used for the evaluation of degradation of chloride-contaminated soils.  相似文献   

6.
The quantitative and qualitative compositions of n-alkanes and carboxylic acids have been identified, and the features of their vertical stratification in peat mound profiles of the forest-tundra zone of Komi Republic have been revealed. The composition of n-alkanes (structures with C23, C25, C27, C29, and C31) and carboxylic acids (C24, C26, and C28) and their proportions make it possible to determine changes in plant communities of peat mounds with time and can be used as markers for the degree of decomposition of organic matter. In cryogenic horizons, the contents of n-alkanes (mainly C23, C25, and C27) and carboxylic acids (C24, C26, and C28) significantly decrease because of the different botanic composition of cryogenic horizons (grass–woody residues) and seasonally thawing horizons (moss–subshrub residues) and the almost complete stopping of the equilibrium accumulation and transformation of organic compounds in permafrost.  相似文献   

7.

Purpose

There is a paucity of data regarding the multiple timescale variations of heterotrophic respiration (R H) and autotrophic respiration (R A) as well as the primary controlling factors. The objective of this study is to find the temporal variations of total soil respiration (R S) and its components, revealing the driving factors at different timescales.

Materials and methods

A trenching method was used to distinguish R S, R H, and R A in a spruce-fir valley forest in northeastern China. We used the closed dynamic chamber method to measure the soil respiration rate. Analyses of R S, R H, and R A in relation to biotic and abiotic factors were conducted to realize the temporal variations at different timescales.

Results and discussion

Only R S and R H showed a distinct diurnal variation and soil temperature (T S) can explain 68 and 59 % of the daily variation, respectively. R S, R H, and R A showed a pronounced, single peak curve seasonally, and T S can explain 11–95 % of the seasonal variation. Soil moisture (W S) maintained at a relatively high level and was not related to R S, R H, or R A on a seasonal scale, and there was no significant relationship between the seasonal R S, R A, and root biomass. However, for 5 years, only the mean R A of the growing season was significantly related to the mean W S, which can explain 39 % of the inter-annual variation of R A. The annual variations of litterfall and the relative growth rate of stems were not related to R S, R H, or R A. The contribution of R H to R S was larger, and the temperature sensitivity was 2.01–3.71 for R S, 1.90–3.08 for R H, and 2.20–5.65 for R A.

Conclusions

R S, R H, and R A show different temporal variations at multiple timescales. When W S is not restricted, T S is the primary driving factor of daily and seasonal variation of R S and R H. In this site, R H accounts for a large proportion of R S and plays a crucial role in determining the magnitude and temporal variation of R S.
  相似文献   

8.

Purpose

The subjects of this study were to investigate the remediating potential of the co-cultivation of Pleurotus eryngii and Coprinus comatus on soil that is co-contaminated with heavy metal (cadmium (Cd)) and organic pollutant (endosulfan), and the effects of the co-cultivated mushrooms on soil biochemical indicators, such as laccase enzyme activity and bacterial counts.

Materials and methods

A pot experiment was conducted to investigate the combined bioremediation effects on co-contaminated soil. After the mature fruiting bodies were harvested from each pot, the biomass of mushrooms was recorded. In addition, bacterial counts and laccase enzyme activity in soil were determined. The content of Cd in mushrooms and soil was detected by the flame atomic absorption spectrometry (FAAS), and the variations of Cd fractions in soil were determined following the modified BCR sequential extraction procedure. Besides, the residual endosulfan in soil was detected by gas chromatography-mass spectrometry (GC-MS).

Results and discussion

The results indicated that co-cultivation of P. eryngii and C. comatus exerted the best remediation effect on the co-contaminated soil. The biomass of mushroom in the co-cultivated group (T group) was 1.57–13.20 and 19.75–56.64% higher than the group individually cultivated with P. eryngii (P group) or C. comatus (C group), respectively. The concentrations of Cd in the fruiting bodies of mushrooms were 1.83–3.06, 1.04–2.28, and 0.67–2.60 mg/kg in T, P, and C groups, respectively. Besides, the removal rates of endosulfan in all treatments exceeded 87%. The best bioremediation effect in T group might be caused by the mutual promotion of these two kinds of mushrooms.

Conclusions

The biomass of mushroom, laccase activity, bacterial counts, and Cd content in mushrooms were significantly enhanced, and the dissipation effect of endosulfan was slightly higher in the co-cultivated group than in the individually cultivated groups. In this study, the effect of co-cultivated macro fungi P. eryngii and C. comatus on the remediation of Cd and endosulfan co-contaminated soil was firstly reported, and the results are important for a better understanding of the co-remediation for co-contaminated soil.
  相似文献   

9.
A field experiment investigating the phytoremediation potential of six plant species—Goosegrass (Eleusine indica), Bermuda grass (Cynodon dactylon), Sessile joyweed (Alternanthera sessilis), Benghal dayflower (Commelina benghalensis), Lovanga (Cleome ciliata), and Chinese violet (Asystasia gangetica)—on soil contaminated with fuel oil (82.5 ml/kg of soil) have been conducted from March to August 2016. The experiments consider three modalities—Tn: unpolluted planted soils, To: unplanted polluted soils, and Tp: polluted planted soil—randomized arranged. Only three (E. indica, C. dactylon, and A. sessilis) of the six species survived while the others died 1 month after the beginning of experimentations. The relative growth indexes showed a strong similarity between the growth parameters of E. indica and C. dactylon, each on polluted and control soils, unlike A. sessilis. Total petroleum hydrocarbons (TPHs) removal efficiency were 82.56, 80.69, and 77% on soil planted with E. indica, C. dactylon, and A. sessilis, respectively; and 57.25% on non-planted soil. According to the bioconcentration and translocation factors, E. indica and A. sessilis are involved on rhizodegradation and phytoextraction of hydrocarbons whereas C. dactylon is only involved into rhizodegradation. Overall, E. indica and C. dactylon out-yielded A. sessilis in the phytoremediation capacity of fuel oil-contaminated soils.  相似文献   

10.
It is generally assumed that the sorption of a nonionic pesticide on soil depends mainly on the content of soil organic matter (SOM); however, there are other factors that can contribute to this process. The possible causes of variation in the carbon-normalized partition coefficient (K OC) for chlorpyrifos (CPF) for a diverse set of ten soils have been investigated. On the one hand, the analysis of the chemical composition of the SOM was analyzed, and on the other hand, the likely interactions between the organic matter and the mineral phase were assessed. Sorption experiments of CPF were performed on whole soil, on soils treated with 2% hydrofluoric acid (HF), and onto calcined soil at 550 °C. Organic matter chemistry of soil was determined by 13C CP/MAS NMR spectroscopy; K OC values were positively correlated with aryl C relative proportion and negatively correlated with alkyl C and O-aryl C proportions and prediction equation of K OC was found (R 2?=?0.82, p?<?0.001). To evaluate possible organo-mineral interactions, a mathematical model was proposed which calculates the concentration of CPF at equilibrium (C cal) considering adsorption coefficients for the organic (K DHF) and inorganic (K D550 °C) soil constituents, separately. The comparison between C cal and the equilibrium concentration obtained from experimental data (C exp) onto whole soil allowed us to confirm that interactions between the OM and clay affect the adsorption of CPF in whole soil. Such findings should be taken into account in the development of predictive models for the evaluation of the fate and transport of this pesticide in soil.  相似文献   

11.
The use of plants for ecological remediation is an important method of controlling heavy metals in polluted land. Cotinus coggygria is a landscape plant that is used extensively in landscaping and afforestation. In this study, the cadmium tolerance level of C. coggygria was evaluated using electrical impedance spectroscopy (EIS) to lay a theoretical foundation for broad applications of this species in Cd-polluted areas and provide theoretical support to broaden the application range of the EIS technique. Two-year-old potted seedlings of C. coggygria were placed in a greenhouse to analyse the changes in the growth, water content and EIS parameters of the roots following treatment with different Cd concentrations (50, 100, 200, 500, 1000 and 1500 mg kg?1), and soil without added Cd was used as the control. The roots grew well following Cd treatments of 50 and 100 mg kg?1. The Cd contents increased with the increase in Cd concentration in the soil. However, the lowest root Cd content was found at 4 months of treatment. The extracellular resistance re and the intracellular resistance ri increased first overall and then decreased with the increasing Cd concentration, and both parameters increased with a longer treatment duration. The water content had a significant negative correlation with the Cd content (P?<?0.01) and the re (P?<?0.05). C. coggygria could tolerate a soil Cd concentration of 100 mg kg?1. There was a turning point in the growth, water content and EIS parameters of the C. coggygria roots when the soil Cd concentration reached 200 mg kg?1. The root water content and re could reflect the level of Cd tolerance in C. coggygria.  相似文献   

12.
Petroleum products which are used in a wide variety of industries as energy sources and raw materials have become a major concern in pollution of terrestrial and marine environments. The purpose of this study was to assess the potential of indigenous microbial isolates for degradation of diesel fuel. Two most proficient bacterial strains among five isolated strains from polluted soil of an industrial refinery were studied. The isolates then were identified as Pseudomonas aeruginosa and Bacillus subtilis using biochemical tests and 16S rRNA gene sequence analyses. P. aeruginosa showed higher biodegradation efficiency than B. subtilis in shaking flask containing diesel-contaminated water. P. aeruginosa and B. subtilis degraded about 87 and 75% of total hydrocarbons, respectively, in flasks containing 2% diesel and 98% water. The biodegradation efficiency of the isolates decreased as diesel contamination increased from 2 to 5%. The isolates showed significantly higher efficiency on degradation of short-chain hydrocarbons in 20 days, i.e., by using P. aeruginosa, removal efficiency of C10 hydrocarbons was near 90%, while about 69% of C20+ hydrocarbons and 47% of aromatic hydrocarbons were removed. Therefore, the isolates showed high capability in biodegradation of diesel contamination of the refinery.  相似文献   

13.

Purpose

The USLE-MM estimates event normalized plot soil loss, Ae,N, by an erosivity term given by the runoff coefficient, QR, times the single-storm erosion index, EI30, raised to an exponent b1?>?1. This modeling scheme is based on an expected power relationship, with an exponent greater than one, between event sediment concentration, Ce, and the EI30/Pe (Pe = rainfall depth) term. In this investigation, carried out at the three experimental sites of Bagnara, Masse, and Sparacia, in Italy; the soundness of the USLE-MM scheme was tested.

Materials and methods

A total of 1192 (Ae,N, QREI30) data pairs were used to parameterize the model both locally and considering all sites simultaneously. The performances of the fitted models were established by considering all erosive events and also by distinguishing between events of different severity.

Results and discussion

The b1 exponent varied widely among the three sites (1.05–1.44) but using a common exponent (1.18) for these sites was possible. The Ae,N prediction accuracy increased in the passage from the smallest erosion events (Ae,N?≤?1 Mg ha?1, median error =?3.35) to the largest ones (Ae,N?>?10 Mg ha?1, median error =?1.72). The QREI30 term was found to be usable to predict both Ae,N and the expected maximum uncertainty of this prediction. Soil erodibility was found to be mainly controlled by the largest erosion events.

Conclusions

Development of a single USLE-MM model appears possible. Sampling other sites is advisable to develop a single USLE-MM model for a general use.
  相似文献   

14.
An optics theory-based mechanistic model for Secchi disk depth (Z SD) is advanced, tested, and applied for Cayuga Lake, NY. Robust data sets supported the initiative, including for (1) Z SD, (2) multiple light attenuation metrics, most importantly the beam attenuation (c) and particulate scattering (b p) coefficients, and (3) measures of constituents responsible for contributions to b p by phytoplankton (b o) and minerogenic particles (b m). The model features two serially connected links. The first link supports predictions of b p from those for b o and b m. The second link provides predictions of Z SD based on those for b p, utilizing an earlier optical theory radiative transfer equation. Recent advancements in mechanistically strong estimates of b m, empirical estimates of b o, and more widely available bulk measurements of c and b p have enabled a transformation from a theory-based conceptual to this implementable Z SD model for lacustrine waters. The successfully tested model was applied to quantify the contributions of phytoplankton biomass, and minerogenic particle groups, such as terrigenous clay minerals and autochthonously produced calcite, to recent b p and Z SD levels and dynamics. Moreover, it has utility for integration as a submodel into larger water quality models to upgrade their predictive capabilities for Z SD.  相似文献   

15.
For the paleoreconstruction of permafrost peat mounds and the identification of plant communities participating in the formation of peat, the contents of n-alkanes (C20–C33) have been determined, and relative changes in the stable isotope compositions of carbon and nitrogen and the C/N ratio have been analysed. Several indices (CPIalkanes, Paq, Pwax) have been calculated to assess the degree of decomposition of the peats studied and the contributions of different plant species to their formation. It has been found that shortand long-chain n-alkanes are concentrated in high-moor peat, while medium-chain alkanes are typical for transitional peat. Integrated analysis of the studied markers has shown that the botanical and material composition of peat, anaerobic conditions of bog formation, and permafrost play an important role in the preservation of organic carbon in permafrost peat mounds. Alternation of plant associations is the main reason for changes in n-alkane concentrations, C/N ratios, and δ13C values.  相似文献   

16.
The content of raffinose family oligosaccharides (RFOs) in pea seeds constrains their usage in feeding humans and animals. In our research, the content of soluble carbohydrates—particularly α-d-galactosides of sucrose (RFOs)—was analyzed. The materials were as follows: 248 accessions from the Polish Pisum Genebank including representatives of taxa (from species to convarietas), type lines for genes controlling seed characters, and breeding materials and cultivars. Accessions were divided into homogeneous groups considering content of total soluble carbohydrates, total RFOs and individual RFOs: raffinose, stachyose and verbascose. The highest content of total soluble carbohydrates and total RFOs were stated for accessions with wrinkled seeds (r and rb genes) and the lowest content for seeds of the wild species P. fulvum Sibth. et Sm. Accessions valuable for breeding (for further decreasing of anti-nutritional compounds) were found among domesticated taxa (P. sativum subsp. sativum convar. vulgare Alef. and speciosum (Dierb.) Alef.), breeding lines, and some wild taxa. Accessions with decreased content of a total RFOs and verbascose are particularly valuable. It was found that the content of total RFOs was the most highly, frequently, and positively correlated with a stachyose and verbascose content. However, in P. fulvum seeds with the lowest content of RFOs and verbascose, a high correlation between the content of total RFOs and stachyose was revealed. Contents of all oligosaccharides were substantially lower in lines with dominant alleles of main pea seed genes (R, A, and I). It can be assumed that wild, primitive peas were characterized by not-all-to-high (rather not high) content of oligosaccharides; then recessive mutations in mentioned genes resulted in an increased content of RFOs. It seems to be an interesting observation from an evolutionary point of view.  相似文献   

17.
The production of nitrous oxide (N2O) by facultative anaerobic fungi from the Fusarium, Trichoderma, and Paecylomyces genera was detected. Representatives of the genus Mucorales did not produce N2O. The formation of N2O in sterile soddy-podzolic soil inoculated by Fusarium oxysporum and F. solani increased significantly with the rise of the soil water content from 16–20% (50–60% of the field water capacity) to 30% (the field water capacity) with maximum values reached at the water content of 50% (the total soil water capacity). The production of N2O by fungi at the soil water content of 50% was often higher under microaerobic conditions than under anaerobic conditions created via substitution of argon for atmospheric air in the flasks. The activity of N2O production by fungi in the soil increased by several times upon nitrite or nitrate amendments. The specific activity of N2 O formation in the soil was 0.38 ± 0.15 nmol N2O/(h per mg) of dry mycelium. It was significantly lower than the rate of N2O formation by Fusarium oxysporum 11dn1 in the nitrite-containing media and close to the rate of N2O formation by this fungus in the nitrate-containing media. A comparison of the rate of N2O release by active strain Fusarium oxysporum 11dn1 inoculated into the sterile soil with the rate of denitrification processes in the nonsterile soil showed that the contribution of soil fungi to the total emission of gaseous nitrogen compounds from the soil may reach 8% under optimum conditions.  相似文献   

18.
This study evaluated the effect of silicate fertilizer on denitrification and associated gene abundance in a paddy soil. A consecutive trial from 2013 to 2015 was conducted including the following treatments: control (CK), mineral fertilizer (NPK), NPK plus sodium metasilicate (NPK + MSF), and NPK plus slag-based silicate fertilizer (NPK + SSF). Real-time quantitative PCR (qPCR) was used to analyze the abundances of nirS, nirK, and nosZ genes. Potential N2O emissions and ammonium and nitrate concentrations were related to the nirS and nirK gene abundance. Compared with the NPK treatments, the addition of a Si fertilizer decreased N2O emission rates and denitrification potential by 32.4–66.6 and 22.0–59.2%, respectively, which were probably related to increased rice productivity, soil Fe availability, and soil N depletion. The abundances of nirS and nirK genes were decreased by 17.7–35.8% and 21.1–43.5% with addition of silicate fertilizers, respectively. Rates of total N2O and N2O from denitrification (DeN2O) emission were positively correlated with the nirS and nirK gene abundance. Nitrate, exchangeable NH4 +, and Fe concentrations were the main factors regulating the nirS and nirK gene abundance. Silicate fertilization during rice growth may serve as an effective approach to decreasing N2O emissions.  相似文献   

19.
Two species of Pb-adapted shrubs, Alyssum montanum and Daphne jasminea, were evaluated in vitro for their tolerance to elevated concentrations of cadmium. Shoot cultures were treated with 0.5, 2.5, and 5.0 μM CdCl2 for 16 weeks and analyzed for their organogenic response, biomass accretion, pigment content, and macronutrient status. Cadmium accumulation and its root-to-shoot translocation were also determined. In both species, rooted microplantlets, suitable for acclimatization, were obtained in the presence of Cd applied as selection agent. In A. montanum, low and moderate dose of Cd stimulated multiplication, rooting, and biomass production. Growth tolerance index (GTI) in Cd-treated shoots ranged from 120 to 215%, while in the roots 51–202%. In turn, in Cd-treated D. jasminea proliferation and rooting were inhibited, and GTI for shoots decreased with increasing doses of Cd. However, roots exposed to Cd had higher biomass accretion. Both species accumulated Cd in developed organs, and its content increased with increasing CdCl2 dose. Interestingly, D. jasminea accumulated higher amounts of Cd in the roots than A. montanum and immobilized this metal in the root system. On the contrary, A. montanum translocated some part of accumulated Cd to the shoots, but with low efficiency. In the presence of Cd, A. montanum maintained macronutrient homeostasis and synthesized higher amounts of phytosynthetic pigments in the shoots. D. jasminea accumulated root biomass, immobilized Cd, and restricted its translocation at the expense of nutrient balance. Considering remediation potential, A. montanum could be exploited in phytoextraction, while D. jasminea in phytostabilization of polluted substrate.  相似文献   

20.
Significant genetic diversity was observed in 218 out of a total of 1309 accessions of amaranth (Amaranthus hypochondriacus L.) and its seven wild relatives, A. spinosus L., A. dubius Mart. ex Thell., A. hybridus L., A. tricolor L., A. cruentus L., A. caudatus L., A. retroflexus L. for 24 nutritional parameters including total oil content, fatty acid profile, total protein content and amino acid profile. Diversity for total oil content (6.42–12.53%), linoleic acid (25.68–54.34%), oleic acid (21.97–42.01%) of the total fatty acids, total protein content (7.84–18.01%), among important essential amino acids; lysine content (0.66–11.12 g/16 g N), methionine (0.35–4.80 g/16 g N) and half cystine and (0.12–8.32 g/16 g N) was reported. The un-weighted pair-group method using arithmetic average cluster analysis based on pair wise Euclidean genetic distance grouped the accessions into seven major clusters. Histidine, half cystine, tyrosine, essential amino acids, total oil content, linoleic acid and oleic acid content were the major parameters contributing significantly to genetic diversity. Present findings indicate that significant diversity exists for nutritional parameters in amaranth germplasm. The promising accessions with higher multiple nutritive traits; protein content (>16%), oil content (>11%), lysine content (>7.5 g/16 g N) and EAA higher than the FAO reported values, were identified. This is the first report on detailed nutritional analysis of diversity collected worldwide. These could be used as potential breeding material for nutritional enhancement through genetic improvement. This will help in overcoming the “triple burden” of malnourishment, hidden hunger, and obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号