首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel gas turbine cycle with hydrogen-fueled chemical-looping combustion   总被引:1,自引:0,他引:1  
In this paper we have proposed a novel gas turbine cycle with hydrogen-fueled chemical-looping combustion, and the system study on two hydrogen-fueled power plants, the new gas turbine cycle and an advanced gas turbine cycle with H2/O2 combustion, has been investigated with the aid of exergy principle (EUD methodology). The hydrogen fueled chemical-looping combustion in the new gas turbine cycle consists of two successive reactions: hydrogen fuel is reacted with metal oxide (reduction of metal oxide), and then instead of air or pure oxygen, the reduced metal is successively oxidized by the saturated air. As a result, the new hydrogen-fueled gas turbine cycle has a breakthrough performance, with at least about 12 percentage-point higher efficiency compared to the gas turbine cycle with H2/O2 combustion, and will be environmentally superior due to complete elimination of NOx formation. The promising results obtained here indicated that this novel gas turbine cycle with hydrogen-fueled chemical looping combustion could make a breakthrough in efficient use of hydrogen energy in power plants.  相似文献   

2.
This paper presents exergy analysis of a conceptualized combined cogeneration plant that employs pressurized oxygen blown coal gasifier and high‐temperature, high‐pressure solid oxide fuel cell (SOFC) in the topping cycle and a bottoming steam cogeneration cycle. Useful heat is supplied by the pass‐out steam from the steam turbine and also by the steam raised separately in an evaporator placed in the heat recovery steam generator (HRSG). Exergy analysis shows that major part of plant exergy destruction takes place in gasifier and SOFC while considerable losses are also attributed to gas cooler, combustion chamber and HRSG. Exergy losses are found to decrease with increasing pressure ratio across the gas turbine for all of these components except the gas cooler. The fuel cell operating temperature influences the performance of the equipment placed downstream of SOFC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates the energetic and environmental performance of micro gas turbine plant with two proposed concurrent improvements: the methane-based fuel enriched by hydrogen and the humidification of the plant cycle. The energetic and environmental benefits of both features are well-know, and the aim of this work is the analysis of their combined impact on the micro gas turbine operation. Despite enhancing fuel with H2 involves significant advantages like greenhouse emission reduction and a better combustion in case of low LHV fuels, most of commercial micro gas turbine combustors are not able to burn fuels with high hydrogen content unless structurally modified. On the contrary, has been demonstrated that humidified gas turbines (i.e., gas turbines with water injection, humid air turbine (HAT) and steam injection gas turbine (STIG) cycles) improve the combustion stability as well as electric power delivered and plant efficiency. Hence, in order to investigate the feasibility of the concurrent two features, the first step of this work was the thermodynamic analysis of a micro gas turbine supplied by methane-based fuels enriched with H2 up to 20%vol, considering both dry and humidified cycles. Since a combustion anomaly was detected, i.e., flashback, in the CFD study on the combustion chamber, a steam injection in the combustor has been added in the plant layout with the aim of overcoming the anomaly, and its effect on the combustion process has been analyzed also raising the hydrogen content up to 30%vol. The main outcome of this paper is the assessment of the feasibility of supplying the combustor of the proposed HGT-STIG micro gas turbine with a hydrogen enrichment up to 30%vol, achieving a safe and regular combustion mainly owing to a steam injection mass flow equal up to 125% of fuel flow.  相似文献   

4.
《Energy》2004,29(8):1183-1205
This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection.  相似文献   

5.
In this paper, a combined power plant based on the dish collector and biomass gasifier has been designed to produce liquefied hydrogen and beneficial outputs. The proposed solar and biomass energy based combined power system consists of seven different subplants, such as solar power process, biomass gasification plant, gas turbine cycle, hydrogen generation and liquefaction system, Kalina cycle, organic Rankine cycle, and single-effect absorption plant with ejector. The main useful outputs from the combined plant include power, liquid hydrogen, heating-cooling, and hot water. To evaluate the efficiency of integrated solar energy plant, energetic and exergetic effectiveness of both the whole plant and the sub-plants are performed. For this solar and biomass gasification based combined plant, the generation rates for useful outputs covering the total electricity, cooling, heating and hydrogen, and hot water are obtained as nearly 3.9 MW, 6584 kW, 4206 kW, and 0.087 kg/s in the base design situations. The energy and exergy performances of the whole system are calculated as 51.93% and 47.14%. Also, the functional exergy of the whole system is calculated as 9.18% for the base working parameters. In addition to calculating thermodynamic efficiencies, a parametric plant is conducted to examine the impacts of reference temperature, solar radiation intensity, gasifier temperature, combustion temperature, compression ratio of Brayton cycle, inlet temperature of separator 2, organic Rankine cycle turbine and pump input temperature, and gas turbine input temperature on the combined plant performance.  相似文献   

6.
The performances of a combined cycle driven by the liquid hydrogen are discussed. The cycle consists of a gas turbine with a pre-cooler system and a steam turbine heated by the exhaust energy of gas turbine. The liquid hydrogen has not only chemical but cryogenic exergy. The latter is about 10% of the total exergy and is converted to the useful work through the pre-cooling system and an auxiliary hydrogen turbine. The specific output and thermal efficiency of the combined cycle are much higher than those of a simple cycle gas turbine, but in order to operate the combined cycle successfully, it is necessary to check the pinch point which may take place in the boiling process which is heated by the exhaust energy of the gas turbine.  相似文献   

7.
In the WE-NET phase I project, a conceptual design of a total system, the energy balance, and the cost of electricity were verified. The performance of SPEM water electrolysis with a high efficiency of 90% was satisfied in the hydrogen production technology. The power generation system of hydrogen-fueled gas turbine with the thermal efficiency of 60% (HHV) and the demonstration test of the combustor, cooling blades were successfully carried out under a temperature of 1700°C. In the WE-NET phase II project, distributed technology such as the hydrogen-refueling station and the metal hydride tank system for vehicle are being prepared for the field demonstration test. Besides, the fundamental technologies of safety measures and hydrogen production systems are also being developed.  相似文献   

8.
对9FA燃机联合循环性能试验中的一些问题进行了分析,如性能的修正、余热锅炉的性能考核、责任分摊等,并给出了作者的看法,供同行参考。  相似文献   

9.
A hydrogen combustion turbine is powered by steam generated from the internal combustion of hydrogen as a fuel mixed with stoichiometric oxygen. As it is possible to use a closed cycle system, benefits in cycle efficiency and a reduction of environmental pollution effects.Three different closed hydrogen combustion turbine cycles are evaluated. These are the Bottoming reheat cycle (A), the Topping extraction cycle (B) designed by Jericha and Ratzesberger, and the Rankine cycle (C).Calculations have been carried out to investigate the best cycle. This investigation consists of the comparison of thermodynamic efficiency, first stage turbine vane height of the high temperature, high pressure turbine, and maximum operating temperature of the heat exchangers. In these investigations, the component efficiencies are assumed to be the values which are expected to be achieved in the near future. As a result, the thermal efficiency of cycles (A) and (B) is the same value of 61.5%. That of cycle (C), which has the feed water heating with optimized pressure ratio of the intermediate turbine, is 58.8%. Cycle (B) has the largest first stage turbine vane height of the high temperature/high pressure turbine.The larger vane height has an advantage from the point of view of both the manufacturing of the complex cooling passage inside the vane and the turbine aerodynamic efficiency. The maximum operating temperature of the heat exchanger of cycles (A) and (B) is 870 °C, while that of cycle (C) is more than 1000 °C where some problems are anticipated in the feasibility of this heat exchanger.This investigation shows that the Topping extraction cycle (B) is considered to be the best cycle from the point of view of both the thermal efficiency and the feasibility of manufacturing.  相似文献   

10.
燃气轮机是21世纪乃至更长时间内能源高效转换与洁净利用系统的核心动力装备.介绍了燃气轮机的发展现状及其在热电联产工程中的应用,简述了联合循环和简单循环燃气轮机电厂的基本组合方式,并列举了目前应用在热电联产工程中的几种主要的燃气轮机.阐述了燃气轮机相对于常规火电机组的优点,分析了影响燃气轮机在热电联产工程中推广的因素,并对我国燃气轮机的发展前景进行了展望.  相似文献   

11.
This paper evaluates nine types of electrical energy generation options with regard to seven criteria. The options use natural gas or hydrogen as a fuel. The Analytic Hierarchy Process was used to perform the evaluation, which allows decision-making when single or multiple criteria are considered.The options that were evaluated are the hydrogen combustion turbine, the hydrogen internal combustion engine, the hydrogen fuelled phosphoric acid fuel cell, the hydrogen fuelled solid oxide fuel cell, the natural gas fuelled phosphoric acid fuel cell, the natural gas fuelled solid oxide fuel cell, the natural gas turbine, the natural gas combined cycle and the natural gas internal combustion engine.The criteria used for the evaluation are CO2 emissions, NOX emissions, efficiency, capital cost, operation and maintenance costs, service life and produced electricity cost.A total of 19 scenarios were studied. In 15 of these scenarios, the hydrogen turbine ranked first and proved to be the most preferred electricity production technology. However since the hydrogen combustion turbine is still under research, the most preferred power generation technology which is available nowadays proved to be the natural gas combined cycle which ranked first in five scenarios and second in eight. The last in ranking electricity production technology proved to be the natural gas fuelled phosphoric acid fuel cell, which ranked in the last position in 13 scenarios.  相似文献   

12.
In the present paper thermodynamic analyses, i.e. both energy and exergy analyses have been conducted for a coal based combined cycle power plant, which consists of pressurized circulating fluidized bed (PCFB) partial gasification unit and an atmospheric circulating fluidized bed (ACFB) char combustion unit. Dual pressure steam cycle is considered for the bottoming cycle to reduce irreversibilities during heat transfer from gas to water/steam. The effect of operating variables such as pressure ratio, gas turbine inlet temperature on the performance of combined cycle power plant has been investigated. The pressure ratio and maximum temperature (gas turbine inlet temperature) are identified as the dominant parameters having impact on the combined cycle plant performance. The work output of the topping cycle is found to increase with pressure ratio, while for the bottoming cycle it decreases. However, for the same gas turbine inlet temperature the overall work output of the combined cycle plant increases up to a certain pressure ratio, and thereafter not much increase is observed. The entropy generation, the irreversibilities in each component of the combined cycle and the exergy destruction/losses are also estimated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
A key challenge facing the future hydrogen economy is a sustainable, lower-cost method of hydrogen production, with reduced dependence on fossil fuels. Thermochemical water splitting with a copper–chlorine (Cu–Cl) cycle is a promising alternative that could be linked with nuclear reactors to thermally decompose water into oxygen and hydrogen, through intermediate copper and chlorine compounds. Heat is transferred between various endothermic and exothermic reactors in the Cu–Cl cycle, through heat exchangers that supply or recover heat from individual processes. This paper examines the heat requirements of these steps, in efforts to recover as much heat as possible and minimize the net heat supply to the cycle, thereby improving its overall efficiency. Also, this paper examines the thermal design of the oxygen production reactor, which is a key process to split water by decomposing an intermediate compound, copper oxychloride (Cu2OCl2), into oxygen gas and molten cuprous chloride. The equipment design is analyzed to scale-up past work in small proof-of-principle test tubes, up to larger capacities of oxygen production with engineering lab-scale equipment.  相似文献   

14.
蒸汽-燃气联合循环装置由于其较高的发电效率而被广泛应用于各大、中型电厂。然而,在微小型燃气-蒸汽发电装置中,蒸汽轮机的应用无疑使得装置体积和成本费用大增。因此,本文提出在小型分布式发电装置中,采用环境压力吸热燃气轮机循环(APGC)装置来替代蒸汽轮机装置吸收燃气轮机排出的废气能量,组成燃-燃联合循环,增加系统本身的做功能力和效率,达到节能、减少燃料消耗的目的。本文从热力学第一定律和第二定律出发,基于ASPENPLUS软件分别建立了燃-燃联合循环、蒸-燃联合循环模型,比较分析了两种循环装置在能量质量和数量上的利用程度。结果表明:燃-燃联合循环装置的效率较高,这在要求能源高效利用的今天具有一定的理论意义。  相似文献   

15.
Due to the higher oxygen content and lower heating value, the amount of biomass required in a combined cycle, where it is used as supplementary fuel, to meet a given energy demand is such that the biomass consumes almost all of the oxygen remaining from gas turbine combustion process under certain conditions. This situation requires additional air for biomass combustion thus reducing the cycle efficiency and the net work output rate while increasing CO2 emissions. Three conditions at which the oxygen is completely consumed are identified based on alterations in net fuel utilization. The first condition is linked to fuel utilization, which is observed to be significantly affected by variations in temperatures at three locations in the combined cycle (air temperature entering the gas turbine combustion chamber, gas turbine inlet temperature and HRSG inlet temperatures). The second condition relates to the characteristics of the feedstock (oxygen content of the biomass and heating value of natural gas). The heat loss due to combustion of natural gas and biomass is the third condition that affects oxygen availability. The current work assesses these conditions in order to identify the proper condition at which no additional air is required for supplementary firing of biomass.  相似文献   

16.
The growth in demand for the production of heat and electricity requires an increase in fuel consumption by power equipment. At the moment, the most demanded thermal equipment for construction and modernization is gas turbine units. Gas turbines can burn a variety of fuels (natural gas, synthesis gas, methane), but the main fuel is natural gas of various compositions. The use of alternative fuels makes it possible to reduce CO2 and NOx emissions during the operation of a gas turbine. Under conditions of operation of thermal power plants at the wholesale power market, it becomes probable that combined cycle power units, designed to carry base load, will start to operate in variable modes. Variable operation modes lead to a decrease in the efficiency of power equipment. One way to minimize or eliminate equipment unloading is to install an electrolysis unit to produce hydrogen.In this article the technology of “Power to gas” production with the necessary pressure at the outlet of 30 kgf/cm2 (this pressure is necessary for stable operation of the fuel preparation system of the gas turbine) is considered. High cost of hydrogen fuel during production affects the final cost of heat and electric energy, therefore it is necessary to burn hydrogen in mixture with natural gas. Burning a mixture of 5% hydrogen fuel and 95% natural gas requires minimal changes in the design of the gas turbine, it is necessary to supplement the fuel preparation system (install a cleaning system, compression for hydrogen fuel). In addition, the produced hydrogen can be stored, transported to the consumer. For the possibility of combustion of a mixture of natural gas and hydrogen fuel in a gas turbine the methodology of calculation of thermodynamic properties of working bodies developed by a team of authors under the guidance of Academician RAS (the Russian Academy of Sciences) V.E. Alemasov has been adapted, resulting in a program that allows to obtain an adequate mathematical model of the gas turbine. The permissible range of the working body temperature is limited to 3000 K. This paper presents the developed all-mode mathematical model of a gas turbine.On the basis of mathematical modeling of a gas turbine, a change in the main energy and environmental characteristics is shown depending on the composition of the fuel gas. Adding 5% hydrogen to natural gas has little effect on the gas turbine air treatment system, the flow rate remains virtually unchanged. CO2 emissions decrease, but there is an increase in the amount of H2O in the turbine exhaust gases.  相似文献   

17.
This paper presents part-load evaluation of a natural gas-fired chemical looping combustion (CLC) combined cycle with CO2 capture. The novel combined cycle employs an air-based gas turbine, a CO2-turbine and a steam turbine cycle. In this combined cycle, the CLC reactors replace combustion chamber of the gas turbine. The proposed combined cycle has a net plant efficiency of about 52.2% at full-load, including CO2 compression to 200 bar. The part-load evaluation shows that reducing the load down to 60% results in an efficiency drop of 2.6%-points. However, the plant shows better relative part-load efficiency compared to conventional combined cycles. The pressure in CLC-reduction and -oxidation reactors is balanced by airflow control, using a compressor equipped with variable guide vanes. A combination of control strategies is discussed for plant start-up and shutdown and for part-load when airflow reduction is not practically possible with current generation of compressors. The results show that the combined cycle has a promising efficiency even at part-load; however, it requires an advanced control strategy.  相似文献   

18.
主要介绍了在M701F燃气轮机联合循环机组两班制调峰运行,机组每日启停并承担腰荷和峰荷的情况下,电厂辅机变频运行的相关情况,并在系统的设计、设备的选型及运行方式等方面都进行了优化,降低了厂用电率和气耗率,取得了很好的安全可靠性和经济效益,对同类型机组具有较好的参考价值。  相似文献   

19.
  [目的]  燃气轮机排气温度高,可增加底循环,利用排气的余热发电,从而提高燃料总的能量利用率。鉴于超临界CO2循环热效率高,并且具有系统简单、结构紧凑、运行灵活等潜在优势,可与燃气轮机组成新型的燃气-超临界CO2联合循环。  [方法]  为了充分利用燃气轮机排气余热,提出在简单回热超临界CO2循环的基础上,再嵌套一个简单回热循环的布置方式,并以PG9351(FA)型燃气轮机为例,对其热效率进行了计算分析。同时,在系统中增加余热利用装置,可将剩余热量用于供热、转换为冷量或发电。  [结果]  结果表明:对于选定的燃气轮机,超临界CO2循环最高温度可达约600 ℃,循环发电效率约32%,获得余热温度为170 ℃以上,余热热量占燃气轮机排气热量9%,联合循环发电效率约54%。  [结论]  燃气-超临界CO2联合循环发电系统具有较高的热效率,并且保留部分较高品位的余热,可进一步用于电厂运行。  相似文献   

20.
In this article, a novel cycle configuration has been studied, termed the extended chemical looping combustion integrated in a steam‐injected gas turbine cycle. The products of this system are hydrogen, heat, and electrical power. Furthermore, the system inherently separates the CO2 and hydrogen that is produced during the combustion. The core process is an extended chemical looping combustion (exCLC) process which is based on classical chemical looping combustion (CLC). In classical CLC, a solid oxygen carrier circulates between two fluidized bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an inherent CO2 separation occurs. In exCLC the oxygen carrier circulates along with a carbon carrier between three fluidized bed reactors, one to oxidize the oxygen carrier, one to produces and separate the hydrogen, and one to regenerate the carbon carrier. The impacts of process parameters, such as flowrates and temperatures have been studied on the efficiencies of producing electrical power, hydrogen, and district heating and on the degree of capturing CO2. The result shows that this process has the potential to achieve a thermal efficiency of 54% while 96% of the CO2 is captured and compressed to 110 bar. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号