首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
聚氨酯-含氟丙烯酸酯复合乳液的制备及其表面性能   总被引:1,自引:0,他引:1  
为了得到低表面自由能的聚氨酯-丙烯酸酯乳胶膜,以2,2,3,4,4,4-六氟丁醇甲基丙烯酸酯(FA)、苯乙烯(St)、丙烯酸丁酯(BA)为单体,在交联聚氨酯溶液(PU)中通过溶液聚合相转化法制得阳离子含氟聚氨酯-丙烯酸酯复合乳液(FPUA).通过FT-IR、TEM、粒径分析及接触角测试对聚合物结构、乳胶粒径及形态、乳胶膜表面性能进行了研究.研究表明,含氟丙烯酸酯的引入使聚氨酯-丙烯酸酯乳胶膜的表面自由能降低50%以上,常温固化的FPUA乳胶膜的表面自由能小于0.0172 J•m-2;该复合乳液的粒子形态呈球形,粒径约为220 nm.  相似文献   

2.
全氟丙烯酸酯改性苯丙乳液表面性能   总被引:2,自引:1,他引:1  
采用两阶段无皂乳液聚合方法,以全氟烷基乙基丙烯酸酯(FAEA)为含氟单体,甲基丙烯酰氧乙基三甲基氯化铵(DMC)为阳离子单体,丙烯酰胺(AM)为亲水单体,在偶氮二异丁腈(AIBN)和2,2-偶氮[2-(2-咪唑啉-2-基)丙烷]二氢氯化物(VA-044)的引发作用下,合成了阳离子型全氟丙烯酸酯改性苯丙乳液。利用FTIR、TGA对共聚物结构和热稳定性进行了表征,分析了氟单体含量和温度对共聚物乳胶膜表面自由能的影响。结果表明,当FAEA含量从1.2%增至5%时,共聚物乳胶膜的表面自由能显著降低,从23.54mJ/m2降至15.27mJ/m2;进一步增加FAEA含量,表面自由能降低缓慢,当FAEA含量为9.8%时,表面能降低到14.83mJ/m2;对共聚物乳胶膜进行退火处理,当温度由25℃升高至120℃时,表面自由能由15.27mJ/m2降低到14.06mJ/m2。  相似文献   

3.
采用半连续种子乳液法将自制的表面亲油性接枝改性纳米二氧化钛与含氟单体甲基丙烯酸十三氟辛酯(G06B)等复合改性丙烯酸酯乳液,用红外光谱(FT-IR)、乳胶膜表面形态分析(AFM)、热重(TG)和拉力机等测试手段研究了表面改性无机纳米TiO_2以及有机氟的引入对乳液及乳胶膜性能的影响。结果表明,改性TiO_2的引入显著增强了聚合物乳胶膜的力学性能并进一步优化了乳胶膜的表面疏水性;乳胶膜疏水性随含氟单体用量增加而增大,热稳定性也有一定地提高,当G06B用量为20%、改性TiO_2用量为0.2%时,乳胶膜的综合性能相对最佳。  相似文献   

4.
以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)为主单体,分别加入丙烯酸六氟丁酯(HFBMA)和甲基丙烯酸十二氟庚酯(DFHM)作为聚丙烯酸酯改性剂,制备了2种含氟丙烯酸酯核壳乳液。采用1H-NMR、TEM、DSC、EDS-SEM、Zeta电位及纳米激光粒度仪等表征了乳胶粒子的组成、结构、粒径及其分布以及乳胶膜表面氟元素的含量。研究了2种含氟单体的用量对乳液稳定性、乳胶膜吸水率、单体转化率、乳胶膜表面疏水疏油性等的影响;研究结果表明:DFHM的改性效果明显好于HFBMA。当DFHM的加入量为4%时,乳胶膜对水的接触角达到93.5°,吸水率降为11.54%,对正己烷的接触角达到82.0°;乳胶粒子的平均粒径70.02 nm,粒径分布窄(PDI=0.082),且具有核壳结构;SEM-EDS测试结果显示,制备的含氟聚合物在成膜过程中,氟元素更易向表面迁移,从理论的5.70%上升到13.47%,从而使乳胶膜具有更好的疏水和疏油性能。  相似文献   

5.
以全氟烷基乙基丙烯酸酯(FEA)为含氟单体,以甲基丙烯酰氧乙基三甲基氯化铵(DMC)为阳离子单体,采用无皂乳液聚合方法合成了阳离子型全氟丙烯酸酯共聚物乳液.分析了FEA含量对涂膜性能的影响,讨论了DMC用量对聚合转化率、涂膜吸水率以及乳胶粒粒径大小的影响;利用FT-IR和X-射线衍射分析(XRD)对共聚物乳液进行了表征,结果表明,当FEA和DMC质量分数分别为7.1%和12%时,涂膜的吸水率最小,仅为3.75%,乳胶粒平均粒径为65 nm.随着FEA量的增加,共聚物膜的硬度减小,拉伸强度增加,断裂伸长率降低;XRD分析显示全氟丙烯酸酯无皂乳液具有好的结晶性.  相似文献   

6.
含氟丙烯酸酯共聚物无皂乳液的粒子形态与性能研究   总被引:2,自引:0,他引:2  
研究了通过半连续滴加法制备的无皂含氟丙烯酸酯聚合物乳液乳胶粒形态、聚合条件对乳胶粒粒径的影响,测定了乳液性能和乳胶膜的表面性能。制备的含氟乳液的乳胶粒呈圆形,粒径分布窄。乳液稳定性好,含氟乳胶膜对水的接触角为110.2°,吸水率低,表现出优异的表面性能。  相似文献   

7.
采用半连续种子乳液聚合的方式,以丙烯酸丁酯、甲基丙烯酸甲酯和甲基丙烯酸六氟丁酯为原料制备了粒径分别为30nm、75nm、210nm左右的含氟丙烯酸酯共聚物乳液。通过乳胶粒核壳结构设计与大小粒径乳液机械共混改性2种方法研究了如何在较少含氟单体用量的情况下达到较好的表面疏水性能。利用X射线光电子能谱、动态光散射仪、接触角测定仪等分析手段,研究了共聚物膜的表面性能和共聚物乳液粒径的大小及分布,测试结果表明,核壳结构乳液成膜后壳层含氟量较高,膜表面接触角大于90,°疏水性能强;而大小粒径乳液共混物成膜后表面含氟量较低,却仍能得到90°以上的接触角,表明乳胶膜表面具有粗糙结构,具有一定的仿荷叶效应。  相似文献   

8.
辛华  张辉  赵星  李莹 《精细化工》2019,36(5):835-842
通过细乳液聚合法,以异佛尔酮二异氰酸酯(IPDI)、聚醚二醇(PTMG)、N-甲基二乙醇胺(MDEA)、三羟甲基丙烷(TMP)及全氟烷基乙基丙烯酸酯(FA)为原料,制备不同FA用量的氟化聚氨酯(PUFPA)乳液。采用FTIR、AFM、SEM-EDS、XPS考察了FA用量对PUFPA乳胶膜自组织梯度结构的影响。结果表明:当FA质量分数为40%(PUFPA40%)时,乳胶膜膜-空气(F-A)面与膜-基材(F-P)面表面自由能差异显著,断面出现相分层,含氟组分(FPA)在F-A面开始富集,乳胶膜呈明显梯度化结构;乳胶膜经热处理(110℃,2 h)后,膜F-A面水接触角达到132.5°,疏水程度增大,膜正反面的表面自由能差异进一步增大,断面分层更明显,且从膜F-A面到膜F-P面沿厚度方向氟元素浓度逐渐降低,梯度化结构更加明显。  相似文献   

9.
微波辐射强化制备含氟硅丙烯酸酯共聚物乳液   总被引:2,自引:0,他引:2  
采用多步种子乳液聚合法,以丙烯酸丁酯、甲基丙烯酸甲酯、g-(甲基丙烯酰氧)丙基三甲氧基硅烷和甲基丙烯酸六氟丁酯为原料在微波辐射下制备了核-壳型含氟硅丙烯酸酯共聚物乳液. 并研究了共聚物的结构、乳胶粒的形态和聚合过程中粒径的变化. 结果表明,所得乳胶粒子呈核-壳结构,与常规加热相比,微波的引用能加快反应速率,形成核-壳结构. 壳层富集含氟硅聚合物的核-壳形态有利于含氟硅结构单元在聚合物膜表面的分布,当氟硅单体为6%(w)时,乳胶膜对水的接触角达91.3o. 加入氟硅组分显著提高了聚合物膜的耐水性,当其含量从0增大到18%时,乳胶膜的吸水率从20.1%降低到3.54%.  相似文献   

10.
聚含氟丙烯酸酯/聚氨酯共聚物细乳液的制备及表征   总被引:2,自引:0,他引:2  
以甲苯二异氰酸酯(TDI)和甲基丙烯酸羟乙酯(HEMA)为原料,合成了丙烯酸酯/聚氨酯(PUA)预聚体;采用细乳液聚合法,合成了聚含氟PUA细乳液。使用红外光谱(FT-IR)和核磁共振(1H-NMR)表征了PUA预聚体及共聚物的结构组成,用激光光散射粒度仪(PCS)分析了乳胶粒的粒径及其分布,并考察了氟单体用量对乳胶膜的吸水率和表面性能的影响。研究结果表明,乳胶粒的粒径随着PUA预聚体用量的增加而增大;当氟单体质量分数由0增至20%时,乳胶膜的吸水率由10.3%降至4.2%,表面自由能由34.89mJ/m2降至15.66mJ/m2,说明氟单体的加入较好地改善了乳胶膜的表面性能。  相似文献   

11.
全氟丙烯酸酯共聚物无皂乳液的制备与膜表面性能   总被引:2,自引:1,他引:1  
以全氟烷基乙基丙烯酸酯(FM)、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸十八酯(ODA)、甲基丙烯酰氧乙基三甲基氯化铵(DMC)为主要原料,以偶氮二异丁腈(AIBN)和过硫酸钾(KPS)为引发剂,以丙烯酸羟乙酯(HEA)为交联剂,制备了水性阳离子全氟丙烯酸酯无皂乳液。并通过接触角、原子力显微镜(AFM)、热重分析(TG)、红外光谱分析(IR)和扫描电子显微镜(SEM)等进行了表征。经过w(FM)=50%的乳液整理过的纯棉布纤维对水和液体石蜡的接触角分别为138°和125°;w(FM)=50%时,乳胶膜的表面自由能为19.01 mJ/m2;该乳胶膜表面结构呈现荷叶效应。  相似文献   

12.
以甲基丙烯酸十二氟庚酯(FM)、丙烯酸丁酯(BA)、苯乙烯(St)、甲基丙烯酰氧乙基三甲基氯化铵(DAC)、丙烯酸十八酯(ODA)为原料,采用无皂乳液聚合,制得了阳离子含氟丙烯酸酯多元共聚物乳液,并对聚合物的结构、组成进行了表征,研究了引发剂、FM的用量对乳液耐水性和稳定性的影响。单独使用含氟乳液对纤维类织物进行表面涂敷,水和油滴在织物上所成的接触角最大可分别达到135°和87°,同时织物的抗张强度、耐折度、平滑度分别提高13.45%、15.38%和60.52%。  相似文献   

13.
含氟硅丙烯酸酯核壳乳液及涂膜表面性能   总被引:3,自引:0,他引:3       下载免费PDF全文
徐蕊  肖新颜 《化工学报》2009,60(12):3142-3147
在可聚合阴离子乳化剂体系下,以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)为主要单体,甲基丙烯酸十二氟庚酯(DFMA)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)为功能单体,采用半连续种子乳液聚合法合成了含氟硅丙烯酸酯核壳乳液。考察了DFMA和KH-570用量对乳液聚合过程和乳胶膜表面疏水性能的影响,并对乳胶膜的表面自由能进行了估算。采用傅里叶红外光谱(FT-IR)、差示扫描量热仪(DSC)、热重(TG)、接触角(CA)及X射线光电子能谱(XPS)对氟硅丙乳液及乳胶膜进行了表征。研究结果表明,氟硅单体有效地参与了聚合,乳胶膜中氟硅元素呈梯度分布,当氟硅丙乳液中DFMA和KH-570用量分别为16%和5%(质量分数)时,涂膜-空气界面与去离子水的接触角为110.6°,涂膜的表面能低至15.4 mN·m-1,其疏水性和耐热性有较大幅度提高。  相似文献   

14.
原位聚合法制备纳米TiO2/有机硅改性丙烯酸酯复合乳液   总被引:10,自引:1,他引:10  
用硅烷偶联剂对纳米二氧化钛(TiO2)粒子表面进行预处理,使其表面由亲水性变为疏水性,并在其表面接枝上可反应的有机官能团。通过改性纳米TiO2表面上的原位聚合反应,制备了纳米TiO2/硅丙复合乳液。透射电子显微镜观察结果显示,乳液中存在两种结构的乳胶粒子:一种是以聚丙烯酸酯为核、有机硅聚合物为壳的核壳结构硅丙乳胶粒子;另一种是以纳米TiO2为核、有机聚合物为壳的纳米TiO2/聚合物复合结构乳胶粒子。乳胶粒子的结构形态可由乳化剂的用量控制。该复合乳液具有较好的杀菌效果,在较短时间内对细菌的杀灭率可达90%以上。  相似文献   

15.
核壳型含氟丙烯酸酯乳液的合成及表征   总被引:2,自引:0,他引:2  
以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、甲基丙烯酸六氟丁酯(HFMA)等为主要原料,采用多步乳液聚合法,合成了具有核壳结构的含氟丙烯酸酯乳液。实验结果表明,主要单体质量比m(MMA)∶m(BA)=45∶55,核壳单体质量比为6∶4,含氟单体质量分数为7%,乳化剂质量分数为3%~4%时,制备得到的含氟丙烯酸乳胶粒子具有软核/硬壳结构,粒径为120 nm,乳胶膜吸水率为7%。通过傅里叶红外光谱法(FTIR)对乳液结构进行表征,结果表明,含氟单体参与了有效聚合;差示量热扫描(DSC)和热重分析法(TG)分析结果表明,聚合物存在两个玻璃化温度(-10.2℃和58.4℃),且热分解温度比不含氟的聚合物提高了59℃;接触角测试结果表明,当w(HFMA)≥7%时,乳胶膜正面与水的接触角为98.2,°说明所合成的核壳结构含氟丙烯酸酯乳液中有机氟富集于壳层,涂膜的耐热、疏水性良好。  相似文献   

16.
张倩 《精细化工》2021,38(1):192-199,211
根据色粉纸表面固砂的性能要求,以丙烯酸丁酯(BA)、甲基丙烯酸异辛酯(EHMA)为软单体、丙烯酸甲酯(MA)、甲基丙烯酸甲酯(MMA)为硬单体,丙烯酸羟丙酯(HPA)为交联单体,甲基丙烯酸(MAA)、甲基丙烯酸缩水甘油酯(GMA)作为功能单体,采用半连续种子乳液聚合法,制备了具有核壳结构的水性丙烯酸酯树脂乳液(WSAE-G),进一步将其作为色粉纸表面固砂用黏合剂和成膜剂.讨论了GMA用量对乳液粒径、稳定性和黏度等的影响.利用DLS和TEM对乳液乳胶粒子的大小及形貌进行了表征,使用TG、DSC以及万能材料试验机对胶膜的性能进行了测试.对固砂产品表面进行SEM测试.结果表明:GMA用量为1%(以混合单体总质量为基准,下同)时,乳液粒径为142.4 nm,PDI为0.063,乳液分散稳定指数(TSI)为0.162287.TEM显示,乳液具有清晰的核壳结构.胶膜拉伸强度达9.057 MPa.制得的色粉纸层间结合力为244.9 J/m2,所形成的固砂层均匀、磨砂性较好且不易掉砂.  相似文献   

17.
以OP-10和SDS为乳化剂,采用预乳化半连续种子乳液聚合工艺制备聚丙烯酸酯乳液。加入亲水单体丙烯酸(AA)、丙烯酸羟乙酯(HEA)和疏水单体丙烯酸长链烷基酯(V)为功能单体,研究了的亲、疏水性功能单体及配比对乳液粘度、表面能、耐水性及涂膜吸水率的影响。结果表明,采用m(AA)∶m(HEA)∶m(V)=1.25∶2∶5得到的丙烯酸酯多元共聚乳液各项性能较佳,此时乳液转化率可达99.91%,乳胶膜吸水率仅为15.21%,表面能为46.3143 J/m2,胶膜浸水脱落时间≥96 h。  相似文献   

18.
以全氟辛基丙烯酸乙酯为主要单体,制备了核壳型含氟丙烯酸酯乳液,采用红外光谱和激光粒度对聚合物进行了表征,并对纯棉织物进行了拒水拒油整理,研究了聚合方法、整理工艺对纯棉织物表面拒水拒油性能的影响,通过SEM对整理后织物表面进行了分析。结果表明含氟丙烯酸酯乳液作为织物整理剂整理后的织物具有良好的拒水拒油性。  相似文献   

19.
Three methods were used to prepare polysiloxane-functionalized acrylic latexes via emulsion polymerization. Ethyl acrylate and 2-ethylhexyl acrylate were used in all three methods as the acrylic phase. In the first method, an acrylic core was prepared with addition of a coupling agent, 3-(trimethoxysilyl) propyl methacrylate, after which a cyclic siloxane monomer (octamethylcyclotetrasiloxane) was reacted with the coupling agent. In the second method, a silane-terminated polysiloxane (H-PDMS) was reacted with ethylene glycol dimethacrylate, and then copolymerized with ethyl acrylate and 2-ethylhexyl acrylate in a batch emulsion polymerization. In the third method, cyclic siloxane monomer was added during emulsion polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl methacrylate. Particle size distribution and particle morphology were evaluated using dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. A core-shell morphology was observed in TEM for the first preparation method as proposed. After film formation, surface tension, morphology and dynamic mechanical properties were investigated. Stratification was also examined by Fourier-transform infrared spectroscopy (FT-IR) and energy dispersive X-ray (EDX). Microphase separation was observed by atomic force microscopy (AFM) after polysiloxane modification. Energy dispersive X-ray data indicated that only the second preparation method had a higher silicon content at the film-air interface than film-substrate interface. In all methods, the storage modulus and surface energy of latex films decreased after polysiloxane modification.  相似文献   

20.
董桂兰  李志能 《广州化工》2012,40(11):79-80,86
采用半连续种子乳液聚合的方式,以十二烷基硫酸钠(SDS)和OP-10为复合乳化剂,甲基丙烯酸十二氟庚酯(Acty-flon-Go4)、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)为原料制备了壳层含氟的核壳型丙烯酸酯共聚物乳液。研究了引发体系和聚合温度对聚合反应转化率的影响;通过透射电镜(TEM)、FTIR、示差扫描量热(DSC)对共聚物乳胶粒径、形态及结构进行了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号