首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents models for simulating the operation of a polymer electrolyte membrane fuel cell (PEMFC) system and the results of the dynamic simulations. The entire system included a PEMFC stack and balance-of-plant components such as an air supply blower, a membrane humidifier, a fuel supply unit, and a heat management unit. Mathematical modeling for the computation of power generation and heat transfer of the PEMFC stack, the heat and mass transfer of the humidifier, and the energy transfer of the cooling system was set up. Theoretical and experiential data such as the voltage-current density relationship of the cell stack and the performance maps of blowers and pumps, together with semi-theoretical heat and mass transfer equations, were used to represent the characteristics of all the components. The effect of the thermal inertia of solid parts was considered in the fuel cell stack, the membrane humidifier, and the radiator. System dynamic behaviors under various operating conditions due to changes in stack current and ambient temperature were predicted. The sudden abnormal operations of the cooling water circulation pump and the radiator fan were also simulated as an example of component malfunctions.  相似文献   

2.
The proton exchange membrane (PEM) fuel cell system consisting of stack and balance of plant (BOP) was modeled in a MATLAB/Simulink environment. High-pressure operating (compressor type) and low-pressure operating (air blower type) fuel cell systems were considered, The effects of two main operating parameters (humidity and the pressure of the supplied gas) on the power distribution characteristics of BOP and the net system efficiency of the two systems mentioned above were compared and discussed. The simulation determines an optimum condition regarding parameters such as the cathode air pressure and the relative humidity for maximum net system efficiency for the operating fuel cell systems. This study contributes to get a basic insight into the fuel cell stack and BOP component sizing. Further research using multiobject variable optimization packages and the approach developed by this study can effectively contribute to an operating strategy for the practical use of fuel cell systems for vehicles.  相似文献   

3.
Polymer electrolyte membrane fuel cells (PEMFCs) have many good characteristics for small power sources such as low operating temperature and high power density. In this study, the effects of thermal management on the performance of PEMFC systems using natural gas fuel, and the effects of integrating PEMFC systems with turbomachines, were investigated. Firstly, performance of various system configurations differing in the thermal management of reforming and stack cooling processes was comparatively analyzed. Then, various integrated system combinations with turbomachines (compressors and turbines) were analyzed. We performed a parametric analysis of the influence of turbine inlet temperature and compressor pressure ratio on system performance, and a 10% difference in efficiency among four simple PEMFC systems was predicted. Pressurization of the PEMFC with adequate thermal management may improve system efficiency, while efficiency enhancement from corresponding simple PEMFC systems was hard to achieve in the ambient pressure integrated systems.  相似文献   

4.
In this paper the modeling of a fuel cell powered electric vehicle is presented. The fuel cell system consisting of a proton exchange membrane (PEM) fuel cell stack and balance of plant (BOP) was co-simulated with a commercial vehicle simulation program. The simulation program calculates the load of the fuel cell depending on the driving mode of the vehicle and also calculates the overall efficiency and each parasitic loss by applying the load in the fuel cell model that is used to estimate the performance of the entire vehicle system by calculating the acceleration performances and fuel economy of the vehicle. Two types of air feeding systems (blower type and compressor type) were modeled by using MATLAB/Simulink environment and the effect of fuel cell stack size (number of cells, cell area) on the fuel economy and performance of the fuel cell powered vehicle was investigated. Using a driving cycle of FTP-75, the required power, BOP component power loss, and system efficiency for two types of fuel cell systems were analyzed. Through this study, we could get a basic insight into the fuel cell powered electric vehicle and its characteristics.  相似文献   

5.
The effect of channel flow pattern on the internal properties distribution of a proton exchange membrane fuel cell (PEMFC) for cathode starvation conditions in a unit cell was investigated through numerical studies and experiments. The polarization curves of a lab-scale mixed serpentine PEMFC were measured with increasing current loads for different cell temperatures (40, 50, and 60°C) at a relative humidity of 100%. To study the local temperature on the membrane, the water content in the MEA, and the gas velocity in terms of the channel type of the PEMFC with operating characteristics, numerical studies using the es-pemfc module of STAR-CD, which have been matched to the experimental data, were conducted in detail. The water content and velocity at the cathode channel bend of the mixed serpentine channel were relatively higher than those at the single and double channels. Conversely, the local temperature and mean temperature on the membrane of a single serpentine channel were the highest among all channels. These results can be used to design the PEMFC system, the channel flow field, and the cooling device.  相似文献   

6.
首先介绍质子交换膜燃料电池建模的现状,然后结合车用情况采用半经验方法进行建模,主要从理论基础出发,简化电堆模型,从中推导出浓差项,提出浓差阻力的概念.根据车用低压电堆的工作条件,采用断电法来获取不同温度下电堆的欧姆损失,用线性拟合方法获得欧姆损失表达式.在保证其他操作条件不变的情况下,改变空气过量系数,通过比较电堆电压的变化情况,采用实数编码的遗传算法对试验数据进行拟合,获得浓差阻力系数的表达式.在获得欧姆、浓差损失的基础上,推导出电堆的活化损失表达式.最终获得车用低压质子交换膜燃料电池电堆的半经验模型,并采用建立的模型对20组不同温度和过量空气系数下的电堆输出电压进行计算,计算结果与实际测量值比较吻合,说明建模方法相当有效,模型精度达到系统优化和控制的要求.  相似文献   

7.

Ammonia-fed solid oxide fuel cell (SOFC) power generation systems are very promising owing to their high efficiency and ease of fuel storage. However, understanding the complexity of fuel cell stacks and systems supplied by ammonia remains challenging. Therefore, it is proposed to investigate the standalone SOFC system to clearly elucidate the behavior of the stack and realize facile implementation. In this study, the stack was modeled and validated using experimental data to confirm its output characteristics. The system efficiency was then calculated under various operating conditions, such as current density, fuel utilization, and stack in/out temperature. The results show that the system efficiency is approximately 54 % and is highly dependent on fuel utilization and current density but not on temperature differences. However, the system can only operate at a temperature difference of 65 °C or higher owing to the effectiveness of the heat exchanger on the fuel side.

  相似文献   

8.
Water plays a critical role on the performance, stability and lifetime of proton exchange membrane fuel cells(PEMFCs). The addition of poly tetrafluoroethylene(PTFE) to the gas diffusion layer, especially, the cathode side, would optimize the transportation of water, electron and gas and thus improve the performance of the fuel cell. But until now, the studies about directly applying the PTFE to the catalyst layer are rarely reported. In this paper, the membrane electrode is fabricated by using directly coating catalyst to the membrane method(CCM) and applying PTFE directly to the cathode electrode catalyst layer. The performance of the single cell is determined by polarization curves and durability tests. Electrochemical impedance spectroscopy(EIS) and scanning electron microscopy(SEM) techniques are used to characterize the electrochemical properties of PEMFC. Also the performance of a 10-cells stack is detected. Combining the performance and the physical-chemistry characterization of PEMFC shows that addition of appropriate content of PTFE to the electrode enhances the performance of the fuel cell, which may be due to the improved water management. Addition of appropriate content of PTFE enhances the interaction between the membrane and the catalyst layer, and bigger pores and highly textured structure form in the MEA, which favors the oxygen mass transfer and protons transfer in the fuel cell. While superfluous addition of PTFE covers the surface of catalysts and hindered the contact of catalyst with Nafion, which leads to the reduction of electrochemical active area and the decay of the fuel cell performance. The proposed research would optimize the water management of the fuel cell and thus improve the performance of the fuel cell.  相似文献   

9.
The effects of anode, cathode, and cooling channels for a Proton Exchange Membrane Fuel Cell (PEMFC) on flow fields have been investigated numerically. Continuous open-faced fluid flow channels formed in the surface of the bipolar plates traverse the central area of the plate surface in a plurality of passes such as a serpentine manner. The pressure distributions and velocity profiles of the hydrogen, air and water channels on bipolar plates of the PEMFC are analyzed using a two-dimensional simulation. The conservation equations of mass, momentum, and energy in the three-dimensional flow solver are modified to include electro-chemical characteristics of the fuel cell. In our three-dimensional numerical simulations, the operation of electro-chemical in Membrane Electrolyte Assembly (MEA) is assumed to be steady-state, involving multi-species. Supplied gases are consumed by chemical reaction. The distributions of oxygen and hydrogen concentration with constant humidity are calculated. The concentration of hydrogen is the highest at the center region of the active area, while the concentration of oxygen is the highest at the inlet region. The flow and thermal profiles are evaluated to determine the flow patterns of gas supplied and cooling plates for an optimal fuel cell stack design.  相似文献   

10.
小通道平行流换热器是燃料电池汽车的主要散热部件。吸收了电堆废热的冷却液(50%乙二醇溶液),流过小通道换热管,由换热器外侧空气冷却。在进液温度、进风温度、冷却液流量以及风速变化的试验工况下,测试了换热器的传热流动性能。引入量纲一参数k,评估了各工况参数对换热量、阻力影响的强弱。接着,分析液侧努谢尔数Nu和摩阻系数f随雷诺数Re的变化趋势,结果显示:在小通道内(当量直径D=2.685 mm),冷却液从层流到湍流的转浪点Re_c=1 750,介于微尺度与常规尺度的临界值之间。在此基础上,通过多元回归法,拟合得到层流和湍流的液侧换热系数,摩阻系数的关联式,以及空气侧阻力f_a公式。Nu和f的计算值与试验值误差分别在[-7.06%,5.93%]和[-3.95%,4.11%]内,f_a的误差在[-2.22%,3.62%]内。基于这些关联式,建立数学模型,可在广泛多变的运行条件下,对换热器的运行性能进行理论预测和评估。  相似文献   

11.
The objective of this study is to investigate the performance characteristics of a stack coolant source heat pump using R744 with a stack coolant heat source for fuel cell electric vehicles under cold weather conditions. Electric heaters are currently used in fuel cell electric vehicles, and the high levels of energy consumption involved lead to lower fuel efficiency and a reduction in the vehicle??s driving range. In order to improve the efficiency of the fuel cell electric vehicles in this study, a heat pump using R744 as a refrigerant and making use of wasted heat from the stacks is developed to cover the heating capacity. This heat pump is tested and performance optimized for stack coolant heat recovery under the compressor speeds, air temperatures, and flow rates of the interior heat exchanger, as well as the coolant flow rates of the CO2-coolant heat exchanger. In addition, the heating capacity of the tested system was sufficiently attained over 5.0 kW at the coolant flow rate of 5.0 l/min under extremely cold weather conditions of ?20°C.  相似文献   

12.
The output power efficiency of the fuel cell system mainly depends on the required current, stack temperature, air excess ratio, hydrogen excess ratio, and inlet air humidity. Therefore, the operating conditions should be optimized to get maximum output power efficiency. In this paper, a dynamic model for the fuel cell stack was developed, which is comprised of a mass flow model, a gas diffusion layer model, a membrane hydration, and a stack voltage model. Experiments have been performed to calibrate the dynamic Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack model. To achieve the maximum output power and the minimum use of hydrogen in a certain power condition, optimization was carried out using Response Surface Methodology (RSM) based on the proposed PEMFC stack model. Using the developed method, optimal operating conditions can be effectively selected in order to obtain minimum hydrogen consumption. This paper was recommended for publication in revised form by Associate Editor Tong Seop Kim Dong-Ji Xuan received his B.S. degree in Mechanical Engineering from Harbin Engineering University, China in 2000. He then received his M.S. degree in Mechanical Engineering from Chonnam National University, South Korea in 2006. Currently, he is a Ph.D. candidate of the Department of Mechanical Engineering, Chonnam National University, South Korea. His research interests include control and optimization of PEM fuel cell system, dynamics and control, and mechatronics. Zhen-Zhe Li received his B.S. degree in Mechanical Engineering from Yanbian University, China in 2002. He then received his M.S. degree in Aerospace Engineering from Konkuk University, South Korea in 2005 and his Ph.D. degree in Mechanical Engineering from Chonnam National University, South Korea in 2009. Dr. Li is currently a Researcher of the Department of Mechanical Engineering in Chonnam National University, South Korea. Dr. Li’s research interests include applied heat transfer, fluid mechanics, and optimal design of thermal and fluid systems. Jin-Wan Kim received his B.S. degree in Aerospace Engineering from Chosun University, South Korea in 1990. He then received his M.S. degree in Aerospace and Mechanical Engineering from Korea Aerospace University, South Korea in 2003 and his Ph.D degree in Mechanical Engineering from Chonnam National University, South Korea in 2008. He is currently a Post Doctor of the Department of Mechanical Engineering in Chonnam National University, South Korea. His research interests include control of hydraulic systems, dynamics and control, and mechatronics. Young-Bae Kim received his B.S. degree in Mechanical Design from Seoul National University, South Korea in 1980. He then received his M.S. degree in Mechanical Engineering from the Korean Advanced Institute of Science and Technology (KAIST), South Korea in 1982 and his Ph.D. degree in Mechanical Engineering from Texas A&M University, USA in 1990. Dr. Kim is currently a Professor of the School of Mechanical and Systems Engineering in Chonnam National University, South Korea. Dr. Kim’s research interests include mechatronics, dynamics and control, and fuel cell hybrid electric vehicle (FCHEV) systems.  相似文献   

13.
基于质子交换膜燃料电池(Proton exchange membrane fuel cell,PEMFC)技术的实际应用要求,针对其国产关键材料和部件(包括电催化剂、质子交换膜、炭纸、双极板)进行性能表征、电池组制造工艺开发和电池组应用性能研究,结果表明:国产炭纸、复合质子交换膜、复合催化剂以及薄型不锈钢双极板无论是在基本性能还是在电池组应用方面都达到了国外同类产品的水平,能够满足车用燃料电池发动机的要求。目前,复合质子交换膜产品已实现批量生产,炭纸和复合催化剂已具备批量制造能力,薄型不锈钢双极板的批量制造工艺和设备已进入开发阶段,采用这些国产材料和部件组装的PEMFC车用发动机正在进行实际应用考核。初步预计:通过这些国产关键材料和部件的应用,可以将PEMFC的材料成本降低50%以上,同时还可以大幅度提高电池性能,为推进我国燃料电池产品的实际应用奠定基础。  相似文献   

14.
A constrained model predictive control (MPC) is designed to regulate the air flow rate of proton exchange membrane fuel cell (PEMFC). Oxygen excess ratio, compressor flow rate and supply manifold pressure are constrained to avoid oxygen starvation, surge and choke phenomena. This is achieved by manipulating compressor voltage and stack current. The choice of the manipulated input to satisfy a constraint is investigated. Surge and choke avoidance is successful, when compressor voltage is manipulated. When stack current is utilized to satisfy surge and choke constraints, a large unrealistic current is needed. Oxygen starvation is successfully avoided utilizing stack current, while compressor voltage manipulation fails to prevent oxygen starvation. Thus, a current governor is implemented to handle oxygen starvation, while the compressor voltage is constrained to avoid surge and choke. Quadratic programming optimization, Laguerre and exponential weight function are employed to reduce the computational burden of the controller. The simulation results prove that the proposed controller managed to satisfy all constraints without any conflict.  相似文献   

15.
针对质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)的性能主要受到物理参数影响的问题,通过FLUENT软件建立燃料电池动力学模型,以对物理参数进行研究,得到了直行多流道单体质子交换膜燃料电池的极化曲线并对输出性能进行对比。结果表明:升高工作温度、升高运行压力以及降低质子交换膜厚度均有助于提高燃料电池输出电压,改善燃料电池的性能。研究结论将为PEMFC的设计和实际应用操作提供参考。  相似文献   

16.
The accelerated degradation in the front ceils of a polymer electrolyte membrane fuel cell(PEMFC) stack seriously reduces the reliability and durability of the whole stack. Most researches only focus on the size and configuration of the gas intake manifold, which may lead to the maldistribution of flow and pressure. In order to find out the mechanisms of the accelerated degradation in the front cells, an extensive program of experimental and simulation work is initiated and the results are reported. It is found that after long-term lifetime tests the accelerated degradation in the front cells occurs in all three fuel cell stacks with different flow-fields under the U-type feed configuration. Compared with the rear cells of the stack, the voltage of the front cells is much lower at the same current densities and the membrane electrode assembly(MEA) has smaller active area, more catalyst particle agglomeration and higher ohmic impedance. For further investigation, a series of three dimensional isothermal numerical models are built to investigate the degradation mechanisms based on the experimental data. The simulation results reveal that the dry working condition of the membrane and the effect of high-speed gas scouting the MEA are the main causes of the accelerated degradation in the front cells of a PEM fuel cell stack under the U-type feed configuration. Several mitigation strategies that would mitigate these phenomena are presented: removing cells that have failed and replacing them with those of the same aging condition as the average of the stack; choosing a Z-type feed pattern instead of a U-type one; putting several air flow-field plates without MEA in the front of the stack; or exchanging the gas inlet and outlet alternately at a certain interval. This paper specifies the causes of the accelerated degradation in the front cells and provides the mitigation strategies.  相似文献   

17.
王伟  马最良  姚杨 《流体机械》2006,34(12):59-61
利用已建立并验证过的空气源热泵机组稳态仿真数学模型,针对在双级耦合热泵供暖系统中作为一级侧机组的空气源热泵机组,着重研究其在低温环境下双级运行的供暖特性和运行特性。计算机仿真结果显示,空气源热泵机组在新工况下运行,低温供暖特性与运行特性均得到有力改善,其应用范围得到有效扩展。  相似文献   

18.
With increasing requirements for the less harmful exhaust emissions and the better fuel economy, the conventional injectors in gasoline engines can be replaced by the air shrouded injector in order to provide improved combustion in engine operations. To find out the optimal shape of air shrouded atomizer attached to the conventional injector nozzle, the critical design parameters such as droplet size, fuel and air inlet angles, and injection angles were investigated based on experimental analyses. To explain the characteristics of fuel atomization, these experimental approaches were carried out using a Phase Doppler Particle Analyzer (PDPA) system. The droplet sizes of injected air fuel mixture were obtained by using the beam diffraction phenomenon. In order to improve the atomization effect, the various atomizers were investigated. The Sauter Mean Diameter (SMD) measured at the predetermined locations outside the atomizer represented the performance of fuel atomization. The experimental results show that the design factors and atomization mechanism needed for developing air shrouded injectors. The suggested design parameters in this paper can be a useful reference in the early design stage.  相似文献   

19.
许岩  全书海  魏五星 《仪表技术》2009,(12):19-21,24
介绍加湿器在燃料电池发动机中的重要作用,并对加湿器进行选择,设计了一套以DSP为核心的发动机空气加湿器控制硬件系统,针对加湿控制系统时变、非线性等复杂特性,设计了模糊控制器;实现了燃料电池发动机空气加湿的智能控制,改善了原先对系统进行手动控制的效果。实验结果表明了该系统的有效性。  相似文献   

20.
In this paper, an adaptive neuro-fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm2) is modeled to the variation of pressure at the cathode side PC (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient αan, relative humidity of inlet fuel RHa and relative humidity of inlet air RHc which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical-validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号