首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
Tremendous research efforts have been focused on the development of a water splitting system (WSS) to harvest hydrogen fuels, but currently available WSSs are complicated and cost-ineffective mainly due to the applications of noble platinum or different electrocatalysts. Herein, a novel WSS comprising electricity generation from solar panels, electricity storage in rechargeable zinc–air batteries (ZABs), and water splitting in electrolyzers, enabled by hybrid cobalt nanoparticles/N-doped carbon embellished on carbon cloth (Co–NC@CC) as multifunctional platinum-free electrocatalysts is reported. Consequently, the Co–NC@CC electrode presents excellent trifunctional electrocatalytic activity with an onset potential of 0.94 V for oxygen reduction reaction, and an overpotential of 240 and 73 mV to achieve a current density of 10 mA cm−2 for oxygen and hydrogen evolution reactions, respectively. For a proof-of-concept application, a rechargeable ZAB assembled from the high-performance Co–NC@CC air cathode exhibits a high open circuit potential of 1.63 V and a superior energy density of 1051 Wh kg−1Zn. Furthermore, an overall water splitting electrolyzer constructed by the symmetrical Co–NC@CC electrodes delivers a current density of 10 mA cm−2 at a low cell voltage of 1.57 V. Such a solar-powered WSS can harvest hydrogen day and night, demonstrating a potential for application in sustainable renewable energy.  相似文献   

2.
Efficient hydrogen production from electrochemical overall water splitting requires high-performance electrocatalysts for hydrogen evolution reaction (HER) and a fast oxidation reaction to replace sluggish oxygen evolution reaction. Herein, Co-doped Rh nanoparticles are thus grown on carbon black using Co nanosheets as the bridge. These nanoparticles with a size of ≈1.94 nm exhibit the overpotential of as low as 2 mV at 10 mA cm−2 for the HER, and a mass activity of as high as 889 mA mg−1 for the methanol oxidation reaction (MOR) in alkaline media. As confirmed by density functional theory simulations, such excellent activity originates from Co-doping, which reduces reaction energy barriers for both the rate-determining step of a Volmer process during the HER and the conversion of *CO to COOH* during the MOR (namely the enhanced adsorption of H2O and COOH*). Coupling boosted HER on the cathode with accelerated MOR on the anode, efficient H2 generation is achieved. This two-electrode cell only requires a cell voltage of 1.545 V at 10 mA cm−2 with impressive long-life cycling stability. Such performance even outperforms that of commercial Pt/C || IrO2 cell. This study offers a new strategy to achieve efficient HER from overall water splitting.  相似文献   

3.
Constructing effective electrocatalysts based on ultrafine heterostructures is a promising strategy for boosting catalytic performance by exposing active sites and increasing specific surface area. However, the fabrication of catalytically active heterostructures with elaborate architectures is still poorly developed owing to synthetic challenges, and the intrinsic mechanism of heterogeneous interfaces remains unclear because of insufficient evidence regarding real active sites. In this study, ultrafine homologous Ni2P–Co2P heterostructures (Ni2P–Co2P/C) are created using a topological transformation strategy from a Ni–Co layered double hydroxide/carbon (Ni–Co LDH/C) interconnected structure in a single nanosheet. When employed as catalysts in urea oxidation reaction (UOR), the Ni2P–Co2P/C heterostructures exhibit superior activity and stability, attributed to the optimized geometric and electronic structures of the catalytic sites. Specifically, it takes an ultralow potential of 1.27 V to reach a current density of 10 mA cm−2 with a small Tafel slope of 28.71 mV dec−1. The operando analyses and calculation results reveal that cobalt incorporation can reduce the generation potential of the surface reconstructive active species and optimize the absorption/desorption energy of the intermediates. Overall, this study proposes an efficient and cost-effective UOR electrocatalyst and offers a new high-performance homologous heterostructure design for widespread application.  相似文献   

4.
Alkaline water electrolysis is a commercially viable technology for green H2 production using renewable electricity from intermittent solar or wind energy, but very few non-noble bifunctional catalysts simultaneously exhibit superb catalytic efficiency and stability at large current densities for hydrogen and oxygen evolution reactions (HER and OER, respectively), especially for iron-based catalysts. Given that iron is the most abundant and least expensive transition metal, iron-based compounds are very attractive low-cost targets as active electrocatalysts for bifunctional water splitting with large-current durability. Herein, the in situ construction of a self-supported Fe2P/Co2N porous heterostructure arrays possessing superb bifunctional catalytic activity in base is reported, featured by low overpotentials of 131 and 283 mV to attain a current density of 500 mA cm−2 for HER and OER, respectively, outperforming most of non-noble bifunctional electrocatalysts reported hitherto. Particularly, this hybrid catalyst also displays an excellent overall water splitting activity, requiring low voltages of 1.561 and 1.663 V to attain 100 and 500 mA cm−2 with excellent durability in 1 m KOH, respectively. Most importantly, the catalyst is stable for >120 h, even when the current density is 500 mA cm−2, which is prominently superior to IrO2(+)//Pt(−) coupled noble electrodes, and is among the very best bifunctional catalysts reported thus far. Detailed theoretical calculations reveal that the interfacial interaction between Fe2P and Co2N can further improve the H* binding energy at the iron sites.  相似文献   

5.
The construction of a novel 3D self‐supported integrated NixCo2?xP@NC (0 < x < 2) nanowall array (NA) on Ni foam (NF) electrode constituting highly dispersed NixCo2?xP nanoparticles, nanorods, nanocapsules, and nanodendrites embedded in N‐doped carbon (NC) NA grown on NF is reported. Benefiting from the collective effects of special morphological and structural design and electronic structure engineering, the NixCo2?xP@NC NA/NF electrodes exhibit superior electrocatalytic performance for water splitting with an excellent stability in a wide pH range. The optimal NiCoP@NC NA/NF electrode exhibits the best hydrogen evolution reaction (HER) activity in acidic solution so far, attaining a current density of 10 mA cm?2 at an overpotential of 34 mV. Moreover, the electrode manifests remarkable performances toward both HER and oxygen evolution reaction in alkaline medium with only small overpotentials of 37 mV at 10 mA cm?2 and 305 mV at 50 mA cm?2, respectively. Most importantly, when coupling with the NiCoP@NC NA/NF electrode for overall water splitting, an alkali electrolyzer delivers a current density of 20 mA cm?2 at a very low cell voltage of ≈1.56 V. In addition, the NiCoP@NC NA/NF electrode has outstanding long‐term durability at j = 10 mA cm?2 with a negligible degradation in current density over 22 h in both acidic and alkaline media.  相似文献   

6.
Developing high-performance and cost-effective bifunctional electrocatalysts for large-scale water electrolysis is desirable but remains a significant challenge. Most existing nano- and micro-structured electrocatalysts require complex synthetic procedures, making scale-up highly challenging. Here, a heterogeneous Ni2P-Fe2P microsheet is synthesized by directly soaking Ni foam in hydrochloric acid and an iron nitrate solution, followed by phosphidation. Benefiting from high intrinsic activity, abundant active sites, and a superior transfer coefficient, this self-supported Ni2P-Fe2P electrocatalyst shows superb catalytic activity toward overall water splitting, requiring low voltages of 1.682 and 1.865 V to attain current densities of 100 and 500 mA cm−2 in 1 m KOH, respectively. Such catalytic performance is superior to the benchmark IrO2 || Pt/C pair and also places this electrocatalyst among the best bifunctional catalysts reported thus far. Furthermore, its enhanced corrosion resistance and hydrophilic surface make it suitable for seawater splitting. It is able to achieve current densities of 100 and 500 mA cm−2 in 1 m KOH seawater at voltages of 1.811 and 2.004 V, respectively, which, together with its robust durability, demonstrates its great potential for realistic seawater electrolysis. This work presents a general and economic approach toward the fabrication of heterogeneous metallic phosphide catalysts for water/seawater electrocatalysis.  相似文献   

7.
Ni–Fe bimetallic electrocatalysts are expected to replace existing precious metal catalysts for water splitting and achieve industrial applications due to their high intrinsic activity and low cost. However, the mechanism by which Ni and Fe species synergistically enhance catalytic activity remains obscure, which still needs further in-depth study. In this study, a highly active bi-functional electrocatalyst of Ni2P/FeP heterostructures is constructed on Fe foam (Ni2P/FeP-FF), clearly illustrating the effect of Ni on Fe species for oxygen evolution reaction (OER) and revealing the true catalytic active phase for hydrogen evolution reaction (HER). The Ni2P/FeP-FF only needs overpotentials of 217 and 42 mV to reach 10 mA cm−2 for OER and HER, respectively, exhibiting superior bi-functional activity for overall water splitting. The Ni can elevate the strength of Fe O on Ni2P/FeP-FF surface and promote the formation of high-valence FeOOH phase during OER, thus enhancing OER performance. Based on first-principles calculations and Raman characterizations, the Ni2P/Ni(OH)2 heterojunction evolved from Ni2P/FeP is identified as the real high active phase for HER. This study not only builds a near-commercial bifunctional electrocatalyst for overall water splitting, but also provides a deep insight for synergistic catalytic mechanism of Ni and Fe species.  相似文献   

8.
Electrocatalysis is a potential method for sustainable hydrogen production, and the development of non-noble metal-based effective electrocatalysts for electrochemical water splitting is the core of exploiting and utilizing renewable energy. Herein, a stupendous electrocatalyst with multiheterostructure interfaces and 3D porous structure is synthesized, and the mechanisms of enhanced electrocatalytic activity combining multicharacterizations and density functional calculations are clarified. Especially, the fabricated Co2P/N@Ti3C2Tx@NF (denoted as CPN@TC) exhibits an ultralow overpotential of 15 mV to arrive at a current density of 10 mA cm−2 with the long-term durability and a small Tafel slope of 30 mV dec−1 in 1 m KOH, which even compares with noble metal catalysts favorably. The outstanding HER activity is ascribed to multiheterointerfaces for adsorbing H2O and H*, fine conductivity for the electronic transmission, and well-designed structure for rapid transport of ions and gases. It is reasonable to think that the synthetic strategy of CPN@TC can be extended to the preparation of transition-metal-based phosphides for enhanced catalytic performance.  相似文献   

9.
Direct seawater electrolysis provides a grand blueprint for green hydrogen (H2) technology, while the high energy consumption has severely hindered its industrialization. Herein, a promising active site implantation strategy is reported for Ni(OH)2 nanowire network electrode on nickel foam substrate by Ru doping (denoted as Ru Ni(OH)2 NW2/NF), which can act as a dual-function catalyst for hydrazine oxidation and hydrogen evolution, achieving an ultralow working potential of 114.6 mV to reach 1000 mA cm−2 and a small overpotential of 30 mV at 10 mA cm−2, respectively. Importantly, using the two-electrode hydrazine oxidation assisted seawater electrolysis, it can drive a large current density of 500 mA cm−2 at 0.736 V with over 200 h stability. To demonstrate the practicability, a home-made flow electrolyzer is constructed, which can realize the industry-level rate of 1 A cm−2 with a record-low voltage of 1.051 V. Theoretical calculations reveal that the Ru doping activates Ni(OH)2 by upgrading d-band centers, which raises anti-bonding energy states and thus strengthens the interaction between adsorbates and catalysts. This study not only provides a novel rationale for catalyst design, but also proposes a feasible strategy for direct alkaline seawater splitting toward sustainable, yet energy-saving H2 production.  相似文献   

10.
The inferior activity of hydrogen oxidation reaction (HOR) in alkali severely hampers the deployment of Ni catalysts in the promising anion exchange membrane fuel cells (AEMFCs), due to the unbalanced binding energies of hydrogen (HBE) and hydroxyl (OHBE) species. Ni-Mo alloy and nickel nitride have been proven to improve the Ni-based activities of HOR but they still can be further enhanced. Because it sacrifices the HBE for enlarging OHBE. Herein, it is reported that the activity can be further improved by constructing heterostructure between Ni nanoparticles (NPs) and nitride of Ni-Mo alloy (Ni0.2Mo0.8N) by an in situ synthetic strategy. The in situ prepared reduced graphene oxide (rGO) supported heterostructure (Ni/Ni0.2Mo0.8N/rGO) possesses the state-of-the-art activity (overpotential of 100 mV to achieve 2.9 mA cm−2), faster kinetics (kinetics current density of 11.20 mA cm−2 and exchange current density of 2.74 mA cm−2), and ultrahigh durability (maintaining the current densities for over 40 h or 10000 cycles). Detailed characterizations together with density functional theory simulations reveal that the tuned d-band electronic structures optimize and balance the HBE and OHBE, facilitating the HOR process on the as-fabricated heterostructured catalyst.  相似文献   

11.
The high intermediate (H*, OH*) energy barriers and slow mass/charge transfer increase the overpotential of alkaline water electrolysis at large-current-density. Engineering the electronic structure with the morphology of the catalyst to reduce energy barriers and improve mass/charge transportation is effective but remains challenging. Herein, a Ce-doped CoP nanosheet is hybrid with Ni3P@NF (Ni foam) support to enhance mass/charge transfer, tune energy barriers, and improve water-splitting kinetics through a synergistic activation. The engineered Ce0.2-CoP/Ni3P@NF cathode exhibits an ultralow overpotential (η500, η1000) of −185, and −225 mV at −500 and −1000 mA cm−2 in 1.0 m  KOH, along with an excellent pH-universality. Impressively, an electrolyzer using the Ce0.2-CoP/Ni3P@NF cathode can afford 500 mA cm−2 at a cell voltage of only 1.775 V and maintain stable electrolysis for 200 h in 25 wt% KOH (50 °C). Characterization and density functional theory calculation further reveal the Ce-doping and CoP/Ni3P hybrid interaction synergistically downshift d-band centers (εd = −2.0 eV) of Ce0.2-CoP/Ni3P to the Fermi level, thereby activate local electronic structure for accelerating H2O dissociation and optimizing Gibbs free energy of hydrogen adsorption (∆GH*).  相似文献   

12.
The advancement of a naturally rich and effective bifunctional substance for hydrogen and oxygen evolution reaction is crucial to enhance hydrogen fuel production efficiency via the electrolysis process. Herein, facile and scalable hydrothermal synthesis of bifunctional electrocatalyst of polyoxometalate anchored zinc cobalt sulfide nanowire on Ni-foam (NF) for overall water splitting is reported for the first time. The electrochemical analysis of POM@ZnCoS/NF displays significantly low HER and OER overpotentials of 170/337 and 200/300 mV to attain a current density of 10/40 and 20/50 mA cm−2, respectively, demonstrating the notable performance of POM@ZnCoS/NF toward H2 and O2 evolution reaction in alkaline medium. Additionally, the electrolyzer consisting of the POM@ZnCoS/NF anode and cathode shows an appealing potential of 1.56 V to deliver 10 mA cm−2 current density for overall water splitting. The high electrocatalytic activity of the POM@ZnCoS/NF is attributed to modulation of the electronic and chemical properties, increment of the electroactive sites and electrochemically active surface area of the zinc cobalt sulfide nanowires due to the anchorage of polyoxometalate nanoparticles. These results demonstrate the advantage of the polyoxometalate incorporation strategy for the design of cost-effective and highly competent bifunctional catalysts for complete water splitting.  相似文献   

13.
Replacement of precious metals with earth‐abundant electrocatalysts for oxygen evolution reaction (OER) holds great promise for realizing practically viable water‐splitting systems. It still remains a great challenge to develop low‐cost, highly efficient, and durable OER catalysts. Here, the composition and morphology of Ni–Co bimetal phosphide nanocages are engineered for a highly efficient and durable OER electrocatalyst. The nanocage structure enlarges the effective specific area and facilitates the contact between catalyst and electrolyte. The as‐prepared Ni–Co bimetal phosphide nanocages show superior OER performance compared with Ni2P and CoP nanocages. By controlling the molar ratio of Ni/Co atoms in Ni–Co bimetal hydroxides, the Ni0.6Co1.4P nanocages derived from Ni0.6Co1.4(OH)2 nanocages exhibit remarkable OER catalytic activity (η = 300 mV at 10 mA cm?2) and long‐term stability (10 h for continuous test). The density‐functional‐theory calculations suggest that the appropriate Co doping concentration increases density of states at the Fermi level and makes the d‐states more close to Fermi level, giving rise to high charge carrier density and low intermedia adsorption energy than those of Ni2P and CoP. This work also provides a general approach to optimize the catalysis performance of bimetal compounds.  相似文献   

14.
The electrocatalytic production of hydrogen from seawater provides a low-cost way to realize energy conversion, but is restricted by high potential for seawater electrolysis and the chlorine oxidation reaction (ClOR) at the anode. Here, the self-growth of Mo-doped Ni2P nanosheet arrays with rich P vacancies on molybdenum-nickel foam (MNF) (Mo-Ni2Pv@MNF) is reported as bifunctional catalyst for Cl-free hydrogen production by coupling hydrogen evolution reaction (HER) with hydrazine oxidation reaction (HzOR) in seawater. Impressively, the Mo-Ni2Pv@MNF electrode as bifunctional catalyst has an excellent activity for overall hydrazine splitting (OHzS) with an ultralow voltage of only 571 mV at 1000 mA cm−2 and can maintain stability for an ultra-long time of 1000 h at 100 mA cm−2. Moreover, integration of OHzS into self-assembled hydrazine fuel cells (DHzFC) or solar cells can enable the self-powered H2 production. The industrial hydrazine sewage as feed for the above eletrolysis system can be degraded to ≈5 ppb rapidly. Density functional thoery calculations demonstrate that the electronic structure modulation induced by P vacancies and Mo doping can not only achieve thermoneutral ΔGH* for hydrogen evolution reaction but also enhance dehydrogenation kinetics from *N2H4 to *NHNH2 for HzOR, achieving enhanced dehydrogenation kinetics.  相似文献   

15.
Seawater electrolysis under alkaline conditions presents an attractive alternative to traditional freshwater electrolysis for mass sustainable high-purity hydrogen production. However, the lack of active and robust electrocatalysts severely impedes the industrial application of this technology. Herein, carbon-doped nanoporous cobalt phosphide (C-Co2P) prepared by electrochemical dealloying is reported as an electrocatalyst for hydrogen evolution reaction (HER). The C-Co2P achieves an overpotential of 30 mV at a current density of 10 mA cm−2 in 1 m KOH, along with impressive catalytic activity and stability at large current densities in artificial alkaline seawater electrolyte containing mixed chlorides of NaCl, MgCl2, and CaCl2. Experimental analysis and density functional theory calculations reveal that the C atom with strong electronegativity and small atomic radius can tailor the electronic structure of Co2P, leading to weakened Co–H bonding toward promoted HER kinetics. Moreover, the C doping introduces a two-stepped H delivery pathway by forming C–Had intermediate, thus reducing the energy barrier of water dissociation. This study offers a new vision toward the development of seawater electrolysis for large-scale hydrogen production.  相似文献   

16.
Exploring highly active and inexpensive bifunctional electrocatalysts for water‐splitting is considered to be one of the prerequisites for developing hydrogen energy technology. Here, an efficient simultaneous etching‐doping sedimentation equilibrium (EDSE) strategy is proposed to design and prepare hollow Rh‐doped CoFe‐layered double hydroxides for overall water splitting. The elaborate electrocatalyst with optimized composition and typical hollow structure accelerates the electrochemical reactions, which can achieve a current density of 10 mA cm?2 at an overpotential of 28 mV (600 mA cm?2 at 188 mV) for hydrogen evolution reaction (HER) and 100 mA cm?2 at 245 mV for oxygen evolution reaction (OER). The cell voltage for overall water splitting of the electrolyzer assembled by this electrocatalyst is only 1.46 V, a value far lower than that of commercial electrolyzer constructed by Pt/C and RuO2 and most reported bifunctional electrocatalysts. Furthermore, the existence of Fe vacancies introduced by Rh doping and the typical hollow structure are demonstrated to optimize the entire HER and OER processes. EDSE associates doping with template‐directed hollow structures and paves a new avenue for developing bifunctional electrocatalysts for overall water splitting. It is also believed to be practical in other catalysis fields as well.  相似文献   

17.
Glycerol electrooxidation (GOR), as a typical nucleophile oxidation reaction, is deemed as a promising alternative anodic route to assist cathodic hydrogen evolution reaction. However, the investigations of high-performance catalysts and industrial-scale application of GOR remain a grand challenge. Herein, biphasic Ni3N/Co3N heterostructure nanowires (denoted as Ni3N/Co3N-NWs) are proposed as an efficient bifunctional catalyst, which realizes a high Faradaic efficiency of 94.6% toward formate production. Importantly, the flow electrolyzer achieves an industry-level current density of 1 A cm−2 at 2.01 V with impressive stability for steady running over 200 h, realizing lower electricity expense of 4.82 kWh m−3H2 and energy saving efficiency of 9.7%, as well as outstanding co-production rates of 11 and 21.4 mmol cm−2 h−1 toward formate and H2, respectively. Theoretical calculations reveal that the efficient electron transfer on Ni3N/Co3N heterointerfaces simultaneously optimizes nucleophile reaction tendency and glycerol dehydrogenation kinetics, thus contributing to excellent GOR performance.  相似文献   

18.
For the practical use of water electrolyzers using non-noble metal catalysts, it is crucial to minimize the overpotentials for the hydrogen and oxygen evolution reactions. Here, cotton-based, highly porous electrocatalytic electrodes are introduced with extremely low overpotentials and fast reaction kinetics using metal nanoparticle assembly-driven electroplating. Hydrophobic metal nanoparticles are layer-by-layer assembled with small-molecule linkers onto cotton fibrils to form the conductive seeds for effective electroplating of non-noble metal electrocatalysts. This approach converts insulating cottons to highly electrocatalytic textiles while maintaining their intrinsic 3D porous structure with extremely large surface area without metal agglomerations. To prepare hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrodes, Ni is first electroplated onto the conductive cotton textile (HER electrode), and NiFe is subsequently electroplated onto the Ni–electroplated textile (OER electrode). The resulting HER and OER electrodes exhibit remarkably low overpotentials of 12 mV at 10 mA cm−2 and 214 mV at 50 mA cm−2, respectively. The two-electrode water electrolyzer exhibits a current density of 10 mA cm−2 at a low cell voltage of 1.39 V. Additionally, the operational stability of the device is well maintained even at an extremely high current density of 1 A cm−2 for at least 100 h.  相似文献   

19.
The sluggish kinetics of oxygen evolution reaction (OER) remains a bottleneck for the electrocatalytic water splitting. In addition to improving the intrinsic activity of electrocatalysts, the electrode structure and external environment also have a significant influence on catalytic performance. Inspired by photosynthesis in plant leaves, a photothermal conversion strategy is proposed via the decoration of photothermal responsive MoS2/FeCoNiS-nanotube (MoS2/FeCoNiS-NT) on designed through-hole porous nickel foam (PNF), defined as MoS2/FeCoNiS-NT@PNF, to boost OER performance. The PNF facilitated bubble transport in OER by mimicking stomata structure of the leaf, and simultaneously, the MoS2/FeCoNiS-NT increases light absorption and photothermal conversion by simulating the leaf epidermis. Benefiting from bionic structure and functional design, the MoS2/FeCoNiS-NT@PNF electrode exhibits highly effective oxygen-evolving ability and excellent photothermal conversion capacity (surface temperature: 25 °C → 52.3 °C, AM1.5G), which increases the intrinsic activity of electrocatalysts. With the assistance of optimized electrode structure and the photothermal effect, the MoS2/FeCoNiS-NT@PNF electrode exhibits a low overpotential of 214 mV to achieve 50 mA cm−2. This research reveals that tuning the electrode structure can promote light absorption in the electrolyte in favor of OER performance, which can serve as an inspiration for the development of high-performance catalytic electrodes.  相似文献   

20.
High entropy alloys (HEAs) composed of multi-metal elements in a single crystal structure are attractive for electrocatalysis. However, identifying the complementary functions of each element in HEAs is a prerequisite. Thus, VxCuCoNiFeMn (x = 0, 0.5, and 1.0) HEAs are investigated to identify the active role of vanadium in improving the electrocatalytic activity for the hydrogen evolution reaction (HER). Structural studies show the successful incorporation of V in the HEA. V1.0CuCoNiFeMn (V1.0-HEA) shows an overpotential of 250 mV versus the reversible hydrogen electrode (at −50 mA cm−2, 1 m KOH), which is ≈170 mV lower than that of control-HEA (422 mV). Improves electrical conductivity and the electrochemical surface area of the V1.0-HEA accelerated HER activity. Furthermore, density functional theory calculations reveal reduced water dissociation and hydrogen adsorption energies of V1.0-HEA, resulting in the boosted HER kinetics. The effect of V incorporation on the barrier height and active sites at the surface of V1.0-HEA is schematically explained. This study can be facilitated for the development of highly active HEAs for large-scale electrochemical water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号