首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A nanocomposite is prepared by encapsulating silica nano-spheres with polymerized ionic liquid in aqueous medium without use of any organic solvents. Vinyl groups are covalently introduced on to the surface of silica nano-spheres, which are then encapsulated by copolymerization of 1-vinyl-3-ethylimidazolium bromide (monomer) and 1,4-butanediyl-3,3′-bis-l-vinylimidazolium dibromide (cross-linker) at room temperature. The derived nanocomposite, PIL@SiO2, provides a green adsorbent for protein sorption. PIL@SiO2 is selective toward acidic proteins, and its selectivity can be controlled via varying the amount of monomer used in the copolymerization process. At pH 6.0, use of 5 mg PIL@SiO2 nanocomposite results in a sorption efficiency of up to 95 % for 200 mg L?1 ovalbumin in 1 mL sample solution. Electrostatic and hydrophobic interactions between PIL@SiO2 and protein species dominate the adsorption process. The ovalbumin adsorption behavior is consistent with the Langmuir model, giving a sorption capacity of 333.3 mg g?1. The retained ovalbumin is recovered by elution with 0.2 % SDS solution. Circular dichroism spectra reveal virtually no change to the α-helix content of ovalbumin after elimination of SDS by use of dialysis. In summary, high-purity ovalbumin is isolated from chicken egg-white by use of the PIL@SiO2 nanocomposite as adsorbent.  相似文献   

2.
A new magnetic nanocomposite material, magnetic 18-crown-6/Fe3O4 nanocomposite (MCFN), was prepared for the removal of U(VI) from aqueous solution. The MCFN was composed of Fe3O4 nanoparticales modified by covalent attachment of 18-crown-6, which can help the material to be removed easily from solution by magnetic force. As a new adsorbent for U(VI) removal, MCFN was characterized by infrared radiation, scanning electron microscopy with energy dispersive X-ray spectroscopy, vibrating sample magnetometer and thermal gravimetric analysis. Those factors affecting the sorption behavior of U(VI), such as acidity, temperature, initial concentration of U(VI) and the amount of crown ethers were studied by orthogonal experiments. A maximum U(VI) sorption capacity of 91.12 mg g?1 was achieved at 45 °C, pH 5.5 for 30 min. The experimental results showed that MCFN had great sorption capacity, high selectivity and strong potentiality of enrichment and recovery for U(VI). In summary, MCFN is a promising candidate for U(VI) separation in future practical applications.  相似文献   

3.
The studies of kinetics and equilibrium sorption of Cu(II) were undertaken using nanoscale zerovalent manganese (nZVMn) synthesized by chemical reduction in a single pot system. nZVMn was characterized using scanning electron microscopy, energy dispersive x-ray, and surface area determined by Brunauer–Emmett–Teller. The effect of pH, contact time, adsorbent dose, agitation speed, initial Cu(II) concentrations, temperature, and ionic strength on the sorption of Cu(II) onto nZVMn were investigated in a batch system. The kinetic data followed pseudo-second-order. The mechanism was governed by pore diffusion. The equilibrium sorption data were tested by Freundlich, Langmuir, Temkin, Dubinin–Kaganer–Raduskevich, and Halsey isotherm models. The Langmuir monolayer adsorption capacity (Qmax = 181.818 mg/g) is much greater compared to other nano-adsorbents used in sorption of Cu(II). The thermodynamic parameters (ΔH0, ΔS0, ΔG0) revealed a feasible, spontaneous, and endothermic adsorption process. nZVMn has a great potential for effective removal of copper (II) in aqueous solution.  相似文献   

4.
Amorphous TiO2, synthesized from TiCl4 and diluted NH3 solution, was characterized by X-ray diffraction spectrometry, UV–Vis diffused reflectance spectroscopy, Fourier-transformed infrared spectroscopy, and scanning electron microscopy. The powder exhibited high specific surface area at 508 m2/g as measured by the Brunauer-Emmett-Teller method. The pH at point of zero charge of the as-prepared amorphous TiO2 was determined by the pH drift method to be 6.8. The product was studied for its sorption efficiency using two dyes—crystal violet (CV) and malachite green (MG). Studies on the effects of various sorption parameters (contact time, TiO2 dosage, pH of solution, and initial concentration of dye) were carried out in order to find the optimum adsorption conditions for which the results were: contact time ~30 min, TiO2 dosage ~0.05–0.1 g, pH 7–9, and initial concentration <1 × 10?4 M. The adsorption data were analyzed and fitted better with the Langmuir model than the Freundlich model. The maximum adsorption capacities obtained from the Langmuir model were 0.4979 and 0.4075 mmol dye/g TiO2 for CV and MG dye, respectively. In addition, the regeneration and the recyclability of the prepared amorphous TiO2 were also studied. The used adsorbent should be regenerated 10–12 h before reuse in the next cycle for the best result.  相似文献   

5.
A magnetic composite of silver/iron oxides/carbon nanotubes (Ag/Fe3O4/CNTs) was synthesized and used as an adsorbent for the preconcentration of mercury ions in water solutions at room temperature (25°C) in this study. The silver nanoparticles were supported on the magnetic CNTs. The modification enabled the composite had not only a high adsorption capacity for mercury ions (Hg2+) but also the magnetic isolation properties. A fast, sensitive, and simple method was successfully developed for the preconcentration and determination of trace amount of Hg2+ in water using the synthesized nanocomposite as adsorbent. The mercury concentration was determined by an atomic fluorescence spectrometer (AFS). The experimental conditions such as pH value, extraction temperature, extraction time, sample volume, eluent composition and concentration, sorbent amount, and coexisting ions were investigated for the optimization. A 500 mL of sample volume resulted in a preconcentration factor of 125. When a 200 mL of sample was employed, the limit of detection for Hg2+ was as low as 0.03 ng mL?1with relative standard deviation of 4.4% at 0.1 ng mL?1 (n = 7). The ease of synthesis and separation, the good adsorption capacity, and the satisfactory recovery will possibly make the composite an attractive adsorbent for the preconcentration of ultratrace Hg2+ in waters.  相似文献   

6.
The adsorption of uranium (VI) using tetraphenylimidodiphosphinate (Htpip) was studied. Factors of affecting sorption efficiency have been investigated and results showed the adsorption of uranium (VI) was equilibrium at pH 4.5, time 20 min, adsorbent dosage 0.005 g and initial concentration 50 mg L?1 reaching 99.86 mg g?1 of adsorption capacity and 99.86% of removal efficiency. Additionally, the interfering ions studies showed that the adsorbent possessed excellent adsorption selectivity of uranium (VI). The surface morphology of Htpip was investigated by SEM. The adsorption process of uranium (VI) onto Htpip fit the pseudo-second-order kinetic model and the Freundlich isotherm model very well.  相似文献   

7.
Extraction, pre-concentration and determination of trace amounts of mercury ions from water samples were investigated by magnetic solid phase extraction (MSPE) method using Fe3O4 nanoparticles decorated with polythionine as an adsorbent. A simple chemical synthesis by catalytic reaction of thionine in the presence of FeCl3 and hydrogen peroxide was used for preparation of the magnetic sorbent. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometer analysis and Fourier transform infrared spectroscopy were used to characterise the adsorbent. Mercury ions were determined by cold vapour atomic absorption spectrometry. The parameters for MSPE procedure, such as pH of the extraction solution, adsorption time, weight adsorbent, elution conditions (type, concentration and volume of the eluent), volume of the sample solution and effects of coexisting ions were investigated. The obtained optimal conditions were: sample pH of 4; sorbent amount of 4 mg; sorption time of 20 min; elution solvent of HNO3 (0.3 mol L?1)/thiourea (2% w/v) with volume of 2 mL, and breakthrough volume of 400 mL. A good linearity in the concentration range of 0.025–40 µg L?1 (R2 > 0.999) with the pre-concentration factor of 198 was obtained. The limits of detection and quantification were achieved as 0.008 and 0.025 µg L?1, respectively. Furthermore, sea and river water samples were analysed and good recoveries (97.1–99.6%) were obtained.  相似文献   

8.
A plasma-assisted synthesis of TiO2/SnO2 nanocomposite is described. In this approach, a precursor containing a mixture of [TiCl3 and SnCl2] exposed to electric discharge was oxidized by plasma-generated reactive species (HO·/H2O = 2.85 eV/SHE). SnO2 microstructures with a diameter of 10–40 µm were coated by thin layers TiO2 nanorods with mean diameter of 6–8 nm. The obtained TiO2/SnO2 nanocomposite was characterized by transmission and scanning electron microscopy, X-ray diffraction and Fourier transform infrared. TiO2/SnO2 nanocomposite was found to be a promising new material for the photocatalytic discoloration of aqueous Remazol Brilliant Blue-R dye under daylight and UVA light sources, due to the combined effects of large specific surface area and heterojunction which efficiently separates the electron–hole pairs delaying the charge recombination. The leaching test indicated that the nanocomposite is stable easily reusable.  相似文献   

9.
Bromate, which is a potential carcinogen, should be removed from drinking water to levels of less than 10 μg/L. A chitosan‐based molecularly imprinted polymer (MIP) and a sol–gel ion‐exchange double hydrous oxide (Fe2O3·Al2O3·xH2O) adsorbent (inorganic adsorbent) were prepared for this purpose. The sorption behavior of each adsorbent including sorption kinetics, isotherms, effect of pH and selective sorption were investigated in detail. Sorption experimental results showed that the MIP adsorbents had better selectivity for bromate, even in the presence of high concentrations of nitrate, as compared to the inorganic adsorbent. It was found that pH does not affect the adsorption of bromate when using the inorganic adsorbent. Additionally, both adsorbents were immobilized in a polymeric cryogel inside plastic carriers to make them more practical for using in larger scale. Regeneration of the cryogels either containing MIP or inorganic adsorbents were carried out by 0.1 M NaOH and 0.1 M NaCl, respectively. It was found that the regenerated MIP and inorganic adsorbents could be used at least three and five times, respectively, without any loss in their sorption capacity.  相似文献   

10.
Uranium (VI)-containing water has been recognized as a potential longer-term radiological health hazard. In this work, the sorptive potential of sunflower straw for U (VI) from aqueous solution was investigated in detail, including the effect of initial solution pH, adsorbent dosage, temperature, contact time and initial U (VI) concentration. A dose of 2.0 g L?1 of sunflower straw in an initial U (VI) concentration of 20 mg L?1 with an initial pH of 5.0 and a contact time of 10 h resulted in the maximum U (VI) uptake (about 6.96 mg g?1) at 298 K. The isotherm adsorption data was modeled best by the nonlinear Langmuir–Freundlich equation. The equilibrium sorption capacity of sunflower straw was observed to be approximately seven times higher than that of coconut-shell activated carbon as 251.52 and 32.37 mg g?1 under optimal conditions, respectively. The positive enthalpy and negative free energy suggested the endothermic and spontaneous nature of sorption, respectively. The kinetic data conformed successfully to the pseudo-second-order equation. Furthermore, energy dispersive X-ray, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that U (VI) adsorption onto sunflower straw was predominantly controlled by ion exchange as well as complexation mechanism. The study revealed that sunflower straw could be exploited for uranium remediation of aqueous streams as a promising adsorbent.  相似文献   

11.
In this work, a carboxymethyl cellulose (CMC)-modified Fe3O4 (denoted as Fe3O4@CMC) composite was synthesized via a simple co-precipitation approach. Fourier transform infrared spectroscopy, zeta potential and thermogravimetric analysis results indicated that CMC was successfully coated on the Fe3O4 surfaces with a weight percent of ~30 % (w/w). The prepared Fe3O4@CMC composite was stable in acidic solution and could be easily collected with the aid of an external magnet. A batch technique was adopted to check the ability of the Fe3O4@CMC composite to remove Eu(III) as a function of various environmental parameters such as contact time, solution pH, ionic strength, solid content and temperature. The sorption kinetics process achieved equilibrium within a contact time of 7 h. The sorption isotherms were well simulated by the Langmuir model, and the maximum sorption capacity at 293 K was calculated to be 2.78 × 10?4 mol/g, being higher than the series of adsorbent materials reported to date. The ionic strength-independent sorption behaviors, desorption experiments by using ammonium acetate and disodium ethylenediamine tetraacetate as well as the spectroscopic characterization suggested that Eu(III) was sequestrated on the hydroxyl and carboxyl sites of Fe3O4@CMC via inner-sphere complexation. Overall, the Fe3O4@CMC composite could be utilized as a cost-effective adsorbent for the removal of trivalent lanthanide/actinides (e.g., 152+154Eu, 241Am and 244Cm) from radioactive wastewater.  相似文献   

12.
《中国化学会会志》2018,65(8):951-959
Triclosan is an antimicrobial agent that is normally used in many personal care products such as toothpastes, shampoos, deodorants, and cosmetics and is toxic to some aquatic organisms, amphibians, and the male reproductive system. In this study, activated carbon from coconut pulp waste (Cocos nuciefera) is used to remove triclosan from aqueous solutions. Activated carbon was prepared using coconut pulp waste treated with zinc chloride and burned in a horizontal furnace with nitrogen flow at 300°C for 1 hr. The parameters studied were the contact time, adsorbent dosage, agitation, initial triclosan concentration, pH, and temperature. The characterization of the adsorbent was done by field‐emission scanning electron microscopy and Fourier transform infrared spectroscopy. The activated carbon reaches equilibrium in 20 min with a percentage removal of 80.77% and adsorbent capacity (qe) of 2.02 mg/g. From the kinetic study, it was concluded that the adsorbent followed a pseudo‐second‐order type reaction with a correlation coefficient (R2) of .999, and qe = 2.036 mg/g. From the isotherm study, the adsorbent was found to follow the Langmuir isotherm with a higher R2 value of .9249 compared to the Freundlich and Temkin isotherms. This study proved that activated carbon derived from coconut pulp waste can be a promising low‐cost adsorbent to remove dissolved triclosan from water.  相似文献   

13.
Adsorption of Cu(II) from aqueous solution on a novel adsorbent, silicon carbide ash (SiC ash), was studied using batch technique. The adsorbent was prepared by pyrolysis of Egyptian rice waste (rice straw and rice husk) and was characterized by scanning electron microscopy (SEM), energy-dispersive x-ray (EDX), Fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), and surface area analysis by Brunauer-Emmett-Teller (BET) Theory. The influence of pH, contact time, initial Cu(II) concentration, adsorbent dose, agitation speed, and temperature was investigated. Adsorption kinetics was analyzed using the pseudo-first-order, the pseudo-second-order, and intraparticular diffusion model. The adsorption process was found to follow a pseudo-second-order rate mechanism. The adsorption isotherm data could be well described by the Langmuir and Freundlich than the Dubinin–Radushkevich adsorption model. The adsorption capacity of 22.06 mg g?1for SiC ash was obtained at pH = 5 and temperature of 298 K. Thermodynamic parameters, change in the free energy (ΔG°), the enthalpy (ΔH°), and the entropy (ΔS°), were also calculated. The overall adsorption process was exothermic, spontaneous in nature, and proceeds with decreased randomness as the entropy is negative value. Adsorption process was successfully applied to remove Cu(II) from an industrial wastewater sample.  相似文献   

14.
Feizbakhsh  Alireza  Ehteshami  Shokooh 《Chromatographia》2016,79(17):1177-1185

In this paper, polythiophene/chitosan magnetic nanocomposite as a novel adsorbent is proposed for the preconcentration of triazines in aqueous samples prior to gas chromatography. The synthesized nanoparticles, magnetic chitosan and polythiophene–chitosan magnetic nanocomposite were characterized by scanning electron microscopy. The magnetic polythiophene–chitosan nanocomposite containing analytes could be removed from the sample solution by applying a permanent magnet. The major factors influencing the extraction efficiency including desorption conditions, nanocomposite components ratio, sorbent amount, extraction time, ionic strength and sample pH were optimized. The developed method proved to be rather convenient and offers sufficient sensitivity and good reproducibility. The limit of detection (S/N = 3) and limit of quantification (S/N = 10) of the method under optimized conditions were 10–30 and 100 ng L−1, respectively. Under the optimum conditions, good linearity was obtained within the range of 100–5000 ng L−1 for all triazines with correlation coefficients >0.9994. The relative standard deviation at a concentration level of 150 ng L−1 was 7–12 %. Furthermore, the method was successfully applied to the determination of triazines in real samples, where relative recovery percentages of 96–102 % were obtained. Compared with other methods, the current method is characterized by easy, fast separation and low detection limits.

  相似文献   

15.
Iron nanocomposite adsorbent was synthesized by green technology with 90% yield. The surface was amorphous and irregular in nature. The iron nanocomposite adsorbent was applied in solid phase membrane microtip extraction (SPMMTE) procedure for the extraction of ibuprofen, pantoprazole, and itopride drugs. SPMMTE was used to extract these drugs from plasma. SunShell C18 column was used with phosphate buffer (10 mM, pH 7.0):acetonitrile (70:30, v/v) as mobile phase at 1.0 mL min?1 flow rate with a detection at 220 nm. The retention factor values were 2.23, 3.25, and 5.38. The values of separation and resolution factors were 1.41 and 1.65, and 5.00 and 12.14, respectively. The percentage recoveries were ibuprofen (90%), pantoprazole (80%), and itopride (75%) in standard solution. The reported SPMMTE and HPLC methods were fast, inexpensive, specific, precise, accurate, and robust for the analysis of the reported drugs. These results indicated that the reported nanocomposite adsorbent-based SPMMTE and HPLC methods may be used to monitor the reported drugs in any unknown matrices.  相似文献   

16.
A sensitive electroanalytical method for the determination of anticancer drug etoposide (ETP) using adsorptive stripping differential pulse voltammetry (AdSDPV) at a multi-walled carbon nanotube-modified glassy carbon electrode (MWCNT-modified GCE) is presented. The surface morphology of modified electrode was characterized by scanning electron microscopy. The effects of accumulation time and potential, pH, scan rate, and amount of MWCNT suspension were investigated. The calibration curve was linear in the concentration range of 2.0?×?10?8–2.0?×?10?6 M with the detection limit of 5.4?×?10?9 M. The reproducibility of the peak current was found at 1.55 % (n?=?5) RSD value in pH 6.0 Britton–Robinson buffer for the MWCNT-modified GCE. The method was then successfully utilized for the determination of ETP in pharmaceutical dosage form, and a recovery of 99.55 % was obtained. The possible oxidation mechanism of ETP was also discussed. The proposed electroanalytical method using MWCNT-modified GCE is the most sensitive method for the determination of ETP with lowest limit of detection in the previously published electrochemical methods.  相似文献   

17.
–SO3H modified mesoporous silica adsorbent with water sorption capacity and fast desorption kinetics for water sorption was synthesized and studied via a combined experimental and numerical approach. Mesoporous silica was synthesized using sol–gel method in H2SO4 medium. The water adsorption isotherms and kinetics over the silica were evaluated by a dynamic water vapor sorption analyzer. Mesoporous silica was modeled using annealing simulation with CVFF forcefield. –SO3H modified mesoporous silica was modeled by the attachment of –SO3H to the surface hydroxyl groups and validated. Simulation results show water sorption capacity at low relative humidity (RH) increases with –SO3H loading on mesoporous silica. Energy distribution of intermolecular interaction and micro-view of water sorption over –SO3H modified mesoporous silica reveal that although strong interaction (intermolecular interaction of ?40 to ?20 kcal/mol) between hydrophilic groups (–SO3H) with water can increase water sorption capacity at low RH, weak H2O–H2O interaction (intermolecular interaction of ?20 to ?10 kcal/mol) dominated water sorption capacity at both low and high RH.  相似文献   

18.
《Analytical letters》2012,45(5):856-867
A novel flow injection system incorporating a micro-column packed with carbon nanotubes (CNTs) as an adsorbent has been applied to the on-line preconcentration of trace silver with detection by flame atomic absorption spectrometry. Silver is first chelated by dithizone (H2Dz), then retained on the CNTs surface and afterward quantitatively eluted by methanol. Influencing parameters, including the concentration of reaction reagent, enrichment variables, and elution variables were investigated. The adsorption mechanisms of Ag-H2Dz chelate retained onto the CNTs surface have also been studied. By loading 6.9 mL sample solution, a linear calibration graph is obtained within the range of 3–120 µg L?1 with R of 0.9996, and a detection limit (3σ) of 0.8 µg L?1 is achieved, along with a precision of 1.6% R.S.D. at the 30 µg L?1 level (n = 7). The dynamic sorption capacity of CNTs for silver is 122 mg g?1. The procedure is demonstrated by measurement of spike recovery in a series of water samples, giving rise to spike recoveries in the range of 96.8–99.7%.  相似文献   

19.
A magnetic metal‐organic framework (MOF) nanocomposite was successfully prepared by a new and green strategy through reasonable design. Magnetic MOF of Fe3O4‐NHSO3H@HKUST‐1 nanocomposite use for removal of lead ions as an environmental pollutant. The experimental results indicated that the nano adsorbent of Fe3O4‐NHSO3H@HKUST‐1 can removed lead ions under optimum operational conditions. The dosage of the nanocomposite, pH of the sample solution, and contact time were obtained to be 10 mg, 7.0, and 90 min, respectively, while the initial concentration of Pb(II) ions of 400 mg/L was used. A kinetic study indicated that a pseudo‐second‐order model agreed well with the experimental data. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum adsorption capacity of the adsorbent for the removal of lead under the optimum operational conditions of pH 7.0 and temperature 25°C was found to be 384.6 mg/g. The thermodynamic parameters indicate that the adsorption of lead is spontaneous and endothermic. The magnetic MOF nanocomposite could be recovered easily and reused many times without significant loss of its nano‐adsorbent activity. The proposed method is simple, eco‐friendly, low cost, and efficient in the removal of lead ions from aqueous solutions.  相似文献   

20.
《Analytical letters》2012,45(6):1012-1024
A highly sensitive method for the determination of the chloroacetanilide herbicides alachlor, acetochlor, pretilachlor, butachlor, and metolachlor in environmental water samples was developed. It is based on solid-phase extraction using magnetic graphene nanocomposite (G-Fe3O4) as the adsorbent, followed by gas chromatography with electron capture detection. This novel adsorbent showed a great adsorptive ability toward the analytes. The main experimental parameters such as the amount of G-Fe3O4, extraction time, ionic strength, the pH of the sample solution, and desorption conditions were optimized. Under the optimum conditions, the enrichment factors of the method for the analytes were in the range from 649 to 1078. A good linear response was achieved in the range of 0.2–20.0 ng mL?1, with correlation coefficients (r) varying from 0.9964 to 0.9998. The limits of detection of the method ranged from 0.02 to 0.05 ng mL?1 and the relative standard deviations were below 4.5%. The method was successfully applied to the determination of the herbicides in environmental water samples. Recoveries of the method for the analytes were in the range of 80.7–105.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号