首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

2.
Liu  Yunfen  Yu  Guirui  Wen  Xuefa  Wang  Yinghong  Song  Xia  Li  Ju  Sun  Xiaomin  Yang  Fengting  Chen  Yongrui  Liu  Qijing 《中国科学:地球科学(英文版)》2006,49(2):99-109

As one component of ChinaFLUX, the measurement of CO2 flux using eddy covariance over subtropical planted coniferous ecosystem in Qianyanzhou was conducted for a long term. This paper discusses the seasonal dynamics of net ecosystem exchange (NEE), ecosystem respiration (RE) and gross ecosystem exchange (GEE) between the coniferous ecosystem and atmosphere along 2003 and 2004. The variations of NEE, RE and GEE show obvious seasonal variabilities and correlate to each other, i.e. lower in winter and drought season, but higher in summer; light, temperature and soil water content are the main factors determining NEE; air temperature and water vapor pressure deficit (VPD) influence NEE with stronger influence from VPD. Under the proper light condition, drought stress could decrease the temperature range for carbon capture in planted coniferous, air temperature and precipitation controlled RE; The NEE, RE, and GEE for planted coniferous in Qianyanzhou are −387.2 g C·m−2 a−1, 1223.3 g C·m−2 a−1, −1610.4 g C·m−2 a−1 in 2003 and −423.8 g C·m−2 a−1, 1442.0 g C·m−2 a−1, −1865.8 g C·m−2 a−1 in 2004, respectively, which suggest the intensive ability of plantation coniferous forest on carbon absorbing in Qianyanzhou.

  相似文献   

3.
Wang  Chunlin  Yu  Guirui  Zhou  Guoyi  Yan  Junhua  Zhang  Leiming  Wang  Xu  Tang  Xuli  Sun  Xiaomin 《中国科学:地球科学(英文版)》2006,49(2):127-138

The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol−1·m−2·s−1) flux data during windy conditions (u* > 0.2 m·s−1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol−1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m−2·s−1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m−2mon−1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as −43.2±29.6 gC·m−2·mon−1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as −563.0 and −441.2 gC·m−2·a−1 respectively, accounting for about 32% of GPP.

  相似文献   

4.
Li  Yingnian  Sun  Xiaomin  Zhao  Xinquan  Zhao  Liang  Xu  Shixiao  Gu  Song  ZhangG  Fawei  Yu  Guirui 《中国科学:地球科学(英文版)》2006,49(2):174-185

The study by the eddy covariance technique in the alpine shrub meadow of the Qinghai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual variations, with more distinct daily changes during the warmer seasons. The CO2 emission of the shrub ecosystem culminated in April and September while the CO2 absorption capacity reached a maximum in July and August. The absorbed carbon dioxide during the two consecutive years was 231.4 and 274.8 g CO2·m−2 respectively, yielding an average of 253.1 gCO2·m−2 per year: that accounts for a large proportion of absorbed CO2 in the region. Obviously, the diurnal carbon flux was negatively related to temperature, radiation and other atmospheric factors. Still, minute discrepancies in kurtosis and duration of carbon emission/absorption were detected between 2003 and 2004. It was found that the CO2 flux in the daytime was similarly affected by photosynthetic photon flux density in both years. Temperature appears to be the most important determinant of CO2 flux: specifically, the high temperature during the plant growing season inhibits the carbon absorption capacity. One potential explanation is that soil respiration is enhanced under such condition. Analysis of biomass revealed that the annual net carbon fixed capacity of aboveground and belowground biomass was 544.0 in 2003 and 559.4 g C·m−2 in 2004, which coincided with the NEE absorption capacity (63.1 g C·m−2 in 2003 and 74.9 g C·m−2 in 2004) in the corresponding plant growing season.

  相似文献   

5.

Eddy covariance technique was used to measure carbon flux during two growing seasons in 2003 and 2004 over typical steppe in the Inner Mongolia Plateau, China. The results showed that there were two different CO2 flux diurnal patterns at the grassland ecosystem. One had a dual peak in diurnal course of CO2 fluxes with a depression of CO2 flux after noon, and the other had a single peak. In 2003, the maximum diurnal uptake and emitting value of CO2 were −7.4 and 5.4 g·m−2·d−1 respectively and both occurred in July. While in 2004, the maximum diurnal uptake and release of CO2 were −12.8 and 5.8 g·m−2·d−1 and occurred both in August. The grassland fixed 294.66 and 467.46 g CO2·m−2 in 2003 and 2004, and released 333.14 and 437.17 g CO2·m−2 in 2003 and 2004, respectively from May to September. Water availability and photosynthetic active radiation (PAR) are two important factors of controlling CO2 flux. Consecutive precipitation can cause reduction in the ability of ecosystem carbon exchange. Under favorable soil water conditions, daytime CO2 flux is dependent on PAR. CO2 flux, under soil water stress conditions, is obviously less than those under favorable soil water conditions, and there is a light saturation phenomena at PAR=1200 μmol·m−2·s−1. Soil respiration was temperature dependent when there was no soil water stress; otherwise, this response became accumulatively decoupled from soil temperature.

  相似文献   

6.
The study by the eddy covariance technique in the alpine shrub meadow of the Qinghai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual variations, with more distinct daily changes during the warmer seasons. The CO2 emission of the shrub ecosystem culminated in April and September while the CO2 absorption capacity reached a maximum in July and August. The absorbed carbon dioxide during the two consecutive years was 231.4 and 274.8 g CO2·m?2 respectively, yielding an average of 253.1 gCO2·m?2 per year: that accounts for a large proportion of absorbed CO2 in the region. Obviously, the diurnal carbon flux was negatively related to temperature, radiation and other atmospheric factors. Still, minute discrepancies in kurtosis and duration of carbon emission/absorption were detected between 2003 and 2004. It was found that the CO2 flux in the daytime was similarly affected by photosynthetic photon flux density in both years. Temperature appears to be the most important determinant of CO2 flux: specifically, the high temperature during the plant growing season inhibits the carbon absorption capacity. One potential explanation is that soil respiration is enhanced under such condition. Analysis of biomass revealed that the annual net carbon fixed capacity of aboveground and belowground biomass was 544.0 in 2003 and 559.4 g C·m?2 in 2004, which coincided with the NEE absorption capacity (63.1 g C·m?2 in 2003 and 74.9 g C·m?2 in 2004) in the corresponding plant growing season.  相似文献   

7.
As one component of ChinaFLUX, the measurement of CO2 flux using eddy covariance over subtropical planted coniferous ecosystem in Qianyanzhou was conducted for a long term. This paper discusses the seasonal dynamics of net ecosystem exchange (NEE), ecosystem respiration (RE) and gross ecosystem exchange (GEE) between the coniferous ecosystem and atmosphere along 2003 and 2004. The variations of NEE, RE and GEE show obvious seasonal variabilities and correlate to each other, i.e. lower in winter and drought season, but higher in summer; light, temperature and soil water content are the main factors determining NEE; air temperature and water vapor pressure deficit (VPD) influence NEE with stronger influence from VPD. Under the proper light condition, drought stress could decrease the temperature range for carbon capture in planted coniferous, air temperature and precipitation controlled RE; The NEE, RE, and GEE for planted coniferous in Qianyanzhou are ?387.2 g C·m?2 a?1, 1223.3 g C·m?2 a?1, ?1610.4 g C·m?2 a?1 in 2003 and ?423.8 g C·m?2 a?1, 1442.0 g C·m?2 a?1, ?1865.8 g C·m?2 a?1 in 2004, respectively, which suggest the intensive ability of plantation coniferous forest on carbon absorbing in Qianyanzhou.  相似文献   

8.
Spatio-temporal patterns and driving mechanisms of forest carbon dioxide (CO2) exchange are the key issues on terrestrial ecosystem carbon cycles, which are the basis for developing and validating ecosystem carbon cycle models, assessing and predicting the role of forests in global carbon balance. Eddy covariance (EC) technique, an important method for measuring energy and material exchanges between terrestrial ecosystems and the atmosphere, has made a great contribution to understanding CO2 exchanges in the biosphere during the past decade. Here, we synthesized published EC flux measurements at various forest sites in the global network of eddy flux tower sites (FLUXNET) and regional flux networks. Our objective was to explore spatio-temporal patterns and driving factors on forest carbon fluxes, i.e. net ecosystem productivity (NEP), gross primary productivity (GPP) and total ecosystem respiration (TER). Globally, forest NEP exhibited a significant latitudinal pattern jointly controlled by GPP and TER. The NEP decreased in an order of warm temperate forest > cold temperate and tropical rain forests > boreal and subalpine forests. Mean annual temperature (MAT) made a greater contribution to forest carbon fluxes than sum of annual precipitation (SAP). As MAT increased, the GPP increased linearly, whereas the TER increased exponentially, resulting in the NEP decreasing beyond an MAT threshold of 20°C. The GPP, TER and NEP varied substantially when the SAP was less than 1500 mm, but tended to increase with increasing SAP. Temporal dynamics in forest carbon fluxes and determinants depended upon time scales. NEP showed a significant interannual variability mainly driven by climate fluctuations and different responses of the GPP and TER to environmental forcing. In a longer term, forest carbon fluxes had a significant age effect. The ecosystem was a net carbon source right after clearcutting, gradually switched to a net carbon sink when the relative stand age (i.e. ratio of actual stand age to the stand rotation age) approached 0.3, and maximized carbon sequestration capacity at premature or mature stand stages. This temporal pattern of NEP was correlated with stand leaf area index and associated GPP. This study highlights the significance of spatio-temporal dynamics in the CO2 exchange in forest carbon cycling studies. It is also suggested that in addition to forest biomes, interannual variations and stand age effects of forest carbon fluxes should be considered in the global carbon balance.  相似文献   

9.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about ?4.671 μmol·m?2·s?1 to a maximum of 13.80 μmol·m?2·s?1, mean net ecosystem exchange of CO2 flux was ?2.0 μmol·m?2·s?1 and 3.9 μmol·m?2·s?1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (R a:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m?2·a?1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m?2·a?1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

10.
We present an uncertainty analysis of ecological process parameters and CO2 flux components (R eco, NEE and gross ecosystem exchange (GEE)) derived from 3 years’ continuous eddy covariance measurements of CO2 fluxes at subtropical evergreen coniferous plantation, Qianyanzhou of ChinaFlux. Daily-differencing approach was used to analyze the random error of CO2 fluxes measurements and bootstrapping method was used to quantify the uncertainties of three CO2 flux components. In addition, we evaluated different models and optimization methods in influencing estimation of key parameters and CO2 flux components. The results show that: (1) Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian) distribution. (2) Different optimization methods result in different estimates of model parameters. Uncertainties of parameters estimated by the maximum likelihood estimation (MLE) are lower than those derived from ordinary least square method (OLS). (3) The differences between simulated Reco, NEE and GEE derived from MLE and those derived from OLS are 12.18% (176 g C·m−2·a−1), 34.33% (79 g C·m−2·a−1) and 5.4% (92 g C·m−2·a−1). However, for a given parameter optimization method, a temperature-dependent model (T_model) and the models derived from a temperature and water-dependent model (TW_model) are 1.31% (17.8 g C·m−2·a−1), 2.1% (5.7 g C·m−2·a−1), and 0.26% (4.3 g C·m−2·a−1), respectively, which suggested that the optimization methods are more important than the ecological models in influencing uncertainty in estimated carbon fluxes. (4) The relative uncertainty of CO2 flux derived from OLS is higher than that from MLE, and the uncertainty is related to timescale, that is, the larger the timescale, the smaller the uncertainty. The relative uncertainties of Reco, NEE and GEE are 4%−8%, 7%−22% and 2%−4% respectively at annual timescale. Supported by the National Natural Science Foundation of China (Grant No. 30570347), Innovative Research International Partnership Project of the Chinese Academy of Sciences (Grant No. CXTD-Z2005-1) and National Basic Research Program of China (Grant No. 2002CB412502)  相似文献   

11.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol?1·m?2·s?1) flux data during windy conditions (u* > 0.2 m·s?1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol?1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m?2·s?1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m?2mon?1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as ?43.2±29.6 gC·m?2·mon?1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as ?563.0 and ?441.2 gC·m?2·a?1 respectively, accounting for about 32% of GPP.  相似文献   

12.
Zhang  Deqiang  Sun  Xiaomin  Zhou  Guoyi  Yan  Junhua  Wang  Yuesi  Liu  Shizhong  Zhou  Cunyu  Liu  Juxiu  Tang  Xuli  Li  Jiong  Zhang  Qianmei 《中国科学:地球科学(英文版)》2006,49(2):139-149

Seasonal metrics and environmental responses to forestry soil surface CO2 emission effluxes among three types of lower subtropical forests were consistently monitored over two years with static chamber-gas chromatograph techniques among three types of lower subtropical forests. Results showed that annual CO2 effluxes (S+L) reached 3942.20, 3422.36 and 2163.02 CO2 g·m−2·a−1, respectively in the monsoon evergreen broadleaf forest, mixed broadleaf-coniferous forest and coniferous forest. All the three types of forests revealed the same characteristics of seasonal changes with the CO2 effluxes peaking throughout June to August. During this peaking period, the effluxes were 35.9%, 38.1% and 40.2% of the total annual effluxes, respectively. The CO2 emission process responding to the environmental factors displayed significantly different patterns in forestry soils of the three types of forests. The coniferous forest (CF) was more sensitive to temperature than the other two types. The Q 10 values were higher, along with greater seasonal variations of the CO2 efflux, indicating that the structurally unique forestry ecosystem has disadvantage against interferences. All the three types of forestry CO2 effluxes showed significant correlation with the soil temperature (T s), soil water content (M s) and air pressure (P a). However, stepwise regression analysis indicated no significant correlation between air pressure and the soil CO2 efflux. With an empirical model to measure soil temperature and water content in 5 cm beneath the soil surface, the CO2 effluxes accounting for 75.7%, 77.8% and 86.5% of the efflux variability respectively in soils of BF, MF and PF were calculated. This model can be better used to evaluate the CO2 emission of soils under water stress and arid or semi-arid conditions.

  相似文献   

13.
Carbon fluxes in temperate grassland ecosystems are characterized by large inter-annual variations due to fluctuations in precipitation and land water availability. Since an eddy flux tower has been in operation in the Xilin Gol grassland, which belongs to typical temperate grassland in North China, in this study, observed eddy covariance flux data were used to critically evaluate the biophysical per- formance of different remote sensing vegetation indices in relation to carbon fluxes. Furthermore, vegetation photosynthesis model (VPM) was introduced to estimate gross primary production (GPP) of the grassland ecosystem for assessing its dependability. As defined by the input variables of VPM, Moderate Resolution Imaging Spectroradimeter (MODIS) and standard data product MOD09A1 were downloaded for calculating enhanced vegetation index (EVI) and land surface water index (LSWI). Measured air temperature (Ta) and photosynthetically active radiation (PAR) data were also included for model simulating. Field CO2 flux data, during the period from May, 2003 to September, 2005, were used to estimate the "observed" GPP (GPPobs) for validation. The seasonal dynamics of GPP predicted from VPM (GPPVPM) was compared quite well (R2=0.903, N=111, p<0.0001) with the observed GPP. The ag- gregate GPPVPM for the study period was 641.5 g C·m?2, representing a ~6% over-estimation, compared with GPPobs. Additionally, GPP predicted from other two typical production efficiency model (PEM) represents either higher overestimation or lower underestimation to GPPobs. Results of this study demonstrate that VPM has potential for estimating site-level or regional grassland GPP, and might be an effective tool for scaling-up carbon fluxes.  相似文献   

14.

Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003–2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (F GEP) and ecosystem respiration (R eco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting F GEP and R eco in 2003, whereas soil moisture imposed a significant influence on both R eco and F GEP in 2004. Under wet conditions, R eco showed an exponentially increasing trend with temperature (Q 10 = 2.0), but an apparent reduction in the value of R eco and its temperature sensitivity were observed during the periods of water stress (Q 10=1.6). Both heat and water stress can cause decrease in F GEP. The seasonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m−2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.

  相似文献   

15.
Fred Worrall  Tim Burt 《水文研究》2005,19(9):1791-1806
The dissolved CO2 concentration of stream waters is an important component of the terrestrial carbon cycle. This study reconstructs long‐term records of dissolved CO2 concentration for the outlets of two large catchments (818 and 586 km2) in northern England. The study shows that:
  • 1. The flux of dissolved CO2 from the catchments (as carbon per catchment area), when adjusted for that which would be carried by the river water at equilibrium with the atmosphere, is between 0 and 0·39 t km−2 year−1 for the River Tees and between 0 and 0·65 t km−2 year−1 for the River Coquet.
  • 2. The flux of dissolved CO2 is closely correlated with dissolved organic carbon (DOC) export and is unrelated to dissolved CO2 export from the headwaters of the study catchments.
  • 3. The evasion rate of CO2 from the rivers (as carbon per stream area) is between 0·0 and 1·49 kg m−2 year−1, and calculated in‐stream productions of CO2 are estimated as between 0·5 and 2·5% of the stream evasion rate.
  • 4. By mass balance, it is estimated that 8% of the annual flux of DOC is lost within the streams of the catchment.
The study shows that the loss of CO2 from the streams of the Tees catchment is between 3·1 and 7·5 kt year−1 (as carbon) for the River Tees, which is the same order as annual CH4 flux from peats within the catchment and approximately 50% of the net CO2 exchange to the peats of the catchment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Estimates of greenhouse gas evasion from rivers have been refined over the past decades to constrain their role in global carbon cycle processes. However, despite 55% of the human population living in urban areas, urban rivers have had limited attention. We monitored carbon dynamics in an urbanized river (River Kelvin, 331 km2, UK) to explore the drivers of dissolved carbon lateral and vertical export. Over a 2-year sampling period, riverine methane (CH4) and carbon dioxide (CO2) concentrations were consistently oversaturated with respect to atmospheric equilibria, leading to continual degassing to the atmosphere. Carbon stable isotopic compositions (δ13C) indicated that terrestrially derived carbon comprised most of the riverine CH4 and dissolved CO2 (CO2*) load while dissolved inorganic carbon (DIC) from groundwater was the main form of riverine DIC. The dynamics of CH4, CO2*, and DIC in the river were primarily hydrology-controlled, that is, [CH4] and [CO2*] both increased with elevated discharge, total [DIC] decreased with elevated discharge while the proportion of biologically derived DIC increased with increasing discharge. The concentration of dissolved organic carbon (DOC) showed a weak relationship with river hydrology in summer and autumn and was likely influenced by the combined sewer overflows. Carbon emission to the atmosphere is estimated to be 3.10 ± 0.61 kg C·m−2·yr−1 normalized to water surface area, with more than 99% emitted as CO2. Annual carbon loss to the coastal estuary is approximately 4.69 ± 0.70 Gg C yr−1, with annual DIC export approximately double that of DOC. Per unit area, the River Kelvin was a smaller carbon source to the atmosphere than natural rivers/streams but shows elevated fluxes of DIC and DOC under comparable conditions. This research illustrates the role urban systems may have on riverine carbon dynamics and demonstrates the potential tight link between urbanization and riverine carbon export.  相似文献   

17.
Rainfall, slopewash (the erosion of soil particles), surface runoff and fine-litter transport steepland sites in the Luquillo Experimental Forest, Puerto Rico (18° 20’ N, 65° 45’ W) were measured from 1991 to 1995. Hillslopes underlain by (1) Cretaceous tuffaceous sandstone and silstone in subtropical rain (tanonuco) forest with vegetation recovering from Hurricane Hugo (1989), and (2) Tertiary quartz diorite in subtropical lower mantone wet (colorado and dwarf) forest with undisturbed forest canopy were compared to recent landslide scars. Monthly surface runoff on these very steep hillslopes (24° to 43°) was only 0·2 to 0·5 per cent of monthly rainfall. Slopewash was higher in sandy loam soils whose parent material is quartz diorite (averaging 46 g m−2 a−1) than in silty clay loam soils derived from tuffaceous sandstone and siltstone where the average was 9 g m−2 a−1. Annual slopewash of 100 to 349 g m−2 on the surfaces of two recent, small landslide scars was measured initially but slopewash decreased to only 3 to 4 g m−2 a−1 by the end of the study. The mean annual mass of fine litter (mainly leaves and twigs) transported downslope at the forested sites ranged from 5 to 8 g m−2 and was lower at the tabonuco forest site, where post-Hurricane Hugo recovery is still in progress. Mean annual fine-litter transport was 2·5 g m−2 on the two landslide scars. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
三峡水库小江回水区春季初级生产力   总被引:3,自引:2,他引:1  
2010年4、5月份,用黑白瓶法对小江回水区春季浮游植物初级生产力进行了原位监测,并研究了初级生产力的分布特征及其与光强、叶绿素a浓度(Chl.a)、水温、二氧化碳分压(pCO2)等影响因素的相关关系.结果表明,4、5月份小江回水区的水柱总初级生产力(GPP)分别为1927.5、1325.0mg O2/( m2·d),...  相似文献   

19.
CO2 flux was measured continuously in a wheat and maize rotation system of North China Plain using the eddy covariance technique to study the characteristic of CO2 exchange and its response to key environmental factors. The results show that nighttime net ecosystem exchange (NEE) varied exponentially with soil temperature. The temperature sensitivities of the ecosystem (Q 10) were 2.94 and 2.49 in years 2002–2003 and 2003–2004, respectively. The response of gross primary productivity (GPP) to photosynthetically active radiation (PAR) in the crop field can be ex-pressed by a rectangular hyperbolic function. Average A max and α for maize were more than those for wheat. The values of α increased positively with leaf area index (LAI) of wheat. Diurnal variations of NEE were significant from March to May and from July to September, but not remarkable in other months. NEE, GPP and ecosystem respiration (R ec) showed significantly seasonal variations in the crop field. The highest mean daily CO2 uptake rate was ?10.20 and ?12.50 gC·m?2?d?1 in 2003 and 2004, for the maize field, respectively, and ?8.19 and ?9.50 gC?m?2·d?1 in 2003 and 2004 for the wheat field, respectively. The maximal CO2 uptake appeared in April or May for wheat and mid-August for maize. During the main growing seasons of winter wheat and summer maize, NEE was controlled by GPP which was chiefly influenced by PAR and LAI. R ec reached its annual maximum in July when R ec and GPP contributed to NEE equally. NEE was dominated by R ec in other months and temperature became a key factor controlling NEE. Total NEE for the wheat field was ?77.6 and ?152.2 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively, and ?120.1 and ?165.6 gC·m?2·a?1 in 2003 and 2004 for the maize field, respectively. The cropland of North China Plain was a carbon sink, with annual ?197.6 and ?317.9 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. After considering the carbon in grains, the cropland became a carbon source, which was 340.5 and 107.5 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. Affected by climate and filed managements, inter-annual carbon exchange varied largely in the wheat and maize rotation system of North China Plain.  相似文献   

20.
Eddy covariance technique was used to measure carbon flux during two growing seasons in 2003 and 2004 over typical steppe in the Inner Mongolia Plateau, China. The results showed that there were two different CO2 flux diurnal patterns at the grassland ecosystem. One had a dual peak in diurnal course of CO2 fluxes with a depression of CO2 flux after noon, and the other had a single peak. In 2003, the maximum diurnal uptake and emitting value of CO2 were ?7.4 and 5.4 g·m?2·d?1 respectively and both occurred in July. While in 2004, the maximum diurnal uptake and release of CO2 were ?12.8 and 5.8 g·m?2·d?1 and occurred both in August. The grassland fixed 294.66 and 467.46 g CO2·m?2 in 2003 and 2004, and released 333.14 and 437.17 g CO2·m?2 in 2003 and 2004, respectively from May to September. Water availability and photosynthetic active radiation (PAR) are two important factors of controlling CO2 flux. Consecutive precipitation can cause reduction in the ability of ecosystem carbon exchange. Under favorable soil water conditions, daytime CO2 flux is dependent on PAR. CO2 flux, under soil water stress conditions, is obviously less than those under favorable soil water conditions, and there is a light saturation phenomena at PAR=1200 μmol·m?2·s?1. Soil respiration was temperature dependent when there was no soil water stress; otherwise, this response became accumulatively decoupled from soil temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号