首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Diet-induced milk fat depression (MFD) in lactating cows has been attributed to alterations in ruminal lipid metabolism leading to the formation of specific fatty acid (FA) biohydrogenation intermediates that directly inhibit milk fat synthesis. However, the mechanisms responsible for decreased lipid synthesis in the mammary gland over time are not well defined. The aim of this study was to evaluate the effect of diet on milk FA composition and milk fat production over time, especially during MFD, and explore the associations between MFD and FA biohydrogenation intermediates in omasal digesta and milk. Four lactating Finnish Ayrshire cows used in a 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments and 35-d experimental periods were fed diets formulated to cause differences in ruminal and mammary lipid metabolism. Treatments consisted of an iso-nitrogenous total mixed ration based on grass silage with a forage to concentrate ratio of 65:35 or 35:65 without added oil, or with sunflower oil at 50 g/kg of diet dry matter. The high-concentrate diet with sunflower oil (HSO) induced a 2-stage drop in milk fat synthesis that was accompanied by specific temporal changes in the milk FA composition. The MFD on HSO was associated especially with trans-10 18:1 and also with trans-9,cis-11 conjugated linoleic acid (CLA) in milk and omasal digesta across all diets and was accompanied by the appearance of trans-10,cis-15 18:2. Trans-10,cis-12 CLA was increased in HSO, but milk fat secretion was not associated with omasal or milk trans-10,cis-12 CLA. The temporal changes in milk fat content and yield and milk FA composition reflect the shift from the predominant ruminal biohydrogenation pathway to an alternative pathway. The ambiguous role of trans-10,cis-12 CLA suggests that trans-10 18:1, trans-9,cis-11 CLA and trans-10,cis-15 18:2 or additional mechanisms contributed to the diet-induced MFD in lactating cows.  相似文献   

2.
Diets causing milk fat depression (MFD) are known to alter ruminal lipid metabolism leading to the formation of specific biohydrogenation intermediates that exert antilipogenic effects. Several isomers of conjugated linoleic acid (CLA), namely trans-10, cis-12 CLA, cis-10, trans-12 CLA, and trans-9, cis-11 CLA, inhibit mammary lipogenesis in the lactating cow, but ruminal outflow of these biohydrogenation intermediates does not account entirely for the reductions in milk fat synthesis during diet-induced MFD. Milk fat trans-10 18:1 concentrations are consistently increased on diets that cause MFD, suggesting a possible role in the regulation of milk fat secretion. Three rumen-fistulated cows in mid lactation were used in a 3 × 3 Latin square to evaluate the effects of a mixture of 18:1 fatty acid methyl esters (FAME) on milk fat synthesis. Experimental treatments consisted of abomasal infusions of ethanol (control), 6 g/d of trans-10, cis-12 CLA (positive control; CLA), or 247 g/d of a mixture of 18:1 FAME containing (% fatty acids) cis-9 (9.45), cis-12 (3.35), trans-10 (37.3), trans-11 (37.4), and trans-12 (2.66) as major isomers (T181 treatment). Administration of the T181 treatment supplied 92.1 g/d of trans-10 18:1. Infusions were conducted over a 5-d period with a 9-d interval between treatments. Treatments had no effect on dry matter intake, milk yield, or milk protein. Relative to the control, abomasal infusion of T181 and trans-10, cis-12 CLA treatments reduced milk fat secretion by 19.5 and 41.5%, respectively. Even though a direct cause and effect on mammary lipogenesis could not be established, comparisons with published data and considerations of the relative abundance of constituent FAME in treatment T181 implicated trans-10 18:1 as the isomer responsible. In conclusion, current data suggest that trans-10 18:1 potentially exerts antilipogenic effects and may contribute to the reduction in milk fat synthesis during diet-induced MFD in the lactating cow.  相似文献   

3.
Under certain dietary situations, rumen biohydrogenation results in the production of unique fatty acids that inhibit milk fat synthesis. The first of these to be identified was trans-10, cis-12 conjugated linoleic acid (CLA), but others are postulated to contribute to diet-induced milk fat depression (MFD). Our objective was to examine the potential role of trans-9, cis-11 CLA in the regulation of milk fat. In a preliminary study, we used gas-liquid and high-performance liquid chromatography techniques to examine milk fat samples from a diet-induced MFD study and found that an increase in trans-9, cis-11 CLA corresponded to the decrease in milk fat yield. We investigated this further using a CLA enrichment of 9, 11 isomers to examine the biological effect of trans-9, cis-11 CLA on milk fat synthesis. Four rumen-fistulated Holstein cows were randomly assigned in a 4 × 4 Latin square experiment involving 5-d treatment periods and abomasal infusion of 1) ethanol (control), 2) a 9, 11 CLA mix (containing 32% trans-9, cis-11, 29% cis-9, trans-11, and 17% trans-9, trans-11), 3) a trans-9, trans-11 CLA supplement, and 4) a trans-10, cis-12 CLA supplement (positive control). The trans-9, trans-11 CLA and trans-10, cis-12 CLA supplements were of high purity (>90%), and all supplements were infused at a rate to provide 5 g/d of the CLA isomer of interest. Milk yield and dry matter intake did not differ among treatments. Compared with the control treatment, milk fat yield was reduced by 15% for the 9, 11 CLA mixture and by 27% for the trans-10, cis-12 CLA treatment. We also found that trans-9, trans-11 CLA had no effect on milk fat yield, and previous research has shown that milk fat yield is unaltered when cows are infused with cis-9, trans-11 CLA. When all treatments were considered, results suggested that trans-9, cis-11 was the CLA isomer in the 9, 11 CLA mix responsible for the reduction in milk fat synthesis, although the magnitude was less than that observed for trans-10, cis-12 CLA. Interestingly, trans-9, trans-11 CLA altered the milk fat desaturase index, further demonstrating that alterations in desaturase can occur independently of effects on milk fat synthesis. Overall, our investigations identified that an increase in milk fat content of trans-9, cis-11 CLA was associated with diet-induced MFD and provided evidence of a role for this isomer in MFD based on the 15% reduction in milk fat yield with abomasal infusion of a CLA enrichment that supplied 5 g/d of trans-9, cis-11 CLA.  相似文献   

4.
Milk fat depression (MFD) caused by intermediates of ruminal biohydrogenation commonly occurs in dairy cattle. The time course of recovery from MFD is important to mechanistic investigation and management of the condition. Nine cows were used in a repeated design, allowing analysis of recovery from diet-induced MFD. A high-fiber, low-oil diet was fed during the control and recovery periods, and a low-fiber, high-oil (LFHO) diet was fed during the induction period. Milk yield was not affected by treatment. Milk fat percentage and yield decreased progressively during induction and were lower by d 3 and 5, respectively. Milk fat concentration and yield increased progressively when cows were fed the recovery diet and were not different from control on d 19 and 15, respectively. Yield of de novo synthesized fatty acids (FA) decreased progressively during the induction period and was lower than that of controls by d 5. A biphasic response was seen for milk fat trans isomers, where trans-11 C18:1 and cis-9,trans-11 conjugated linoleic acid (CLA) were elevated initially and trans-10 C18:1 and trans-10,cis-12 CLA increased progressively during the induction period. A similar biphasic response was seen during recovery from MFD, with trans-10 C18:1 and trans-10,cis-12 rapidly decreasing initially and trans-11 C18:1 and cis-9,trans-11 CLA increasing slightly above control levels during the second phase. Recovery from diet-induced MFD occurs gradually with a short lag when dietary fiber and oil concentrations are corrected. This time course provides a framework to identify factors causing MFD and set expectations during recovery from MFD.  相似文献   

5.
Trans-10, cis-12 conjugated linoleic acid (CLA) is a potent inhibitor of milk fat synthesis, and the magnitude of milk fat depression is often correlated with the fat content of this isomer. However, the trans-10, cis-12 CLA content does not always correspond to the extent of milk fat depression, and in some instances, an increase in the milk fat content of trans-10, trans-12 CLA has been observed. We synthesized trans-10, trans-12 CLA (>90% purity) and investigated its effect on milk fat synthesis and incorporation into plasma lipids. Three rumen-fistulated Holstein cows were randomly assigned in a 3 × 3 Latin square experiment. Treatments were a 4-d abomasal infusion of 1) ethanol (control), 2) a trans-10, cis-12 CLA supplement (positive control), and 3) a trans-10, trans-12 CLA supplement; 5 g/d of the CLA isomer of interest was provided. Milk yield, dry matter intake, and milk protein were unaffected by treatment. Treatment with trans-10, trans-12 CLA had no effect on milk fat yield, whereas treatment with trans-10, cis-12 CLA reduced milk fat yield by 28%. Incorporation of CLA was greatest for the plasma triglyceride fraction, and the milk fat content was subsequently elevated within the respective treatment groups. The milk fatty acid composition indicated that Δ9-desaturase was reduced significantly for both CLA treatments, but the reduction was greater for the treatment with trans-10, trans-12 CLA. Overall, abomasal infusion of trans-10, trans-12 CLA and trans-10, cis-12 CLA altered the desaturase ratios, but only trans-10, cis-12 CLA reduced milk fat synthesis.  相似文献   

6.
Three Holstein cows were fed a high-concentrate diet (65:35 concentrate to forage) supplemented with either 5% sunflower oil (SO), 5% linseed oil (LO), or 2.5% fish oil (FO) to examine effects on biohydrogenation and fatty acid profiles in rumen, blood plasma, and milk. Diets were fed in a 3 × 3 Latin square with 4-wk periods with grass hay as the forage. Milk yield, dry matter intake, and percentages of milk fat (2.64) and protein (3.22) did not differ. All diets resulted in incomplete hydrogenation of unsaturated fatty acids as indicated by the profiles of 18:1 isomers, conjugated 18:2 isomers, nonconjugated 18:2 isomers, and 18:0 in ruminal fluid. Percentages of 8:0-14:0 and 16:0 in milk fat were greater with FO. Percentage and yield of trans10,cis12-18:2 were small and greater in cows fed SO (0.14%, 0.57 g/d) than FO (0.03%, 0.15 g/d) or LO (0.04%, 0.12 g/d). Percentage and yield of trans10-18:1, however, increased with FO (6.16%) and SO (6.47%) compared with LO (1.65%). Dietary FO doubled percentage of cis11-18:1 in rumen, plasma, and milk fat. Despite a lack of difference in ruminal percentage of trans11-18:1 (10.5%), cows fed FO had greater plasma trans11-18:1 (116 vs. 61.5 μg/mL) but this response did not result in greater trans11-18:1 percentage in milk fat, which averaged 5.41% across diets. Percentage (2.2%) and yield (14.3 g/d) of cis9,trans11-18:2 in milk fat did not differ due to oils. Unique responses to feeding LO included greater than 2-fold increases in percentages of trans13+14-18:1, trans15-18:1, trans16-18:1, cis15-18:1, cis9,trans12-18:2 and trans11,cis15 -18:2 in umen, plasma, and milk, and cis9,trans13-18:2 in plasma and milk. Ruminal 18:0 percentage had the highest positive correlation with milk fat content (r = 0.82) across all diets. When compared with previous data with cows fed high-concentrate diets without oil supplementation, results suggest that greater production of trans10-18:1, cis11-18:1, and trans11,cis15-18:2 coupled with low production of 18:0 in the rumen may be associated with low milk fat content when feeding high-concentrate diets and fish oil. In contrast, SO or LO could lead to low milk fat content by increasing ruminal trans10-18:1 (SO) or trans11,cis15-18:2 and trans9,trans12-18:2 (LO) along with a reduction in mammary synthesis of 8:0-16:0. Simultaneous increases in ruminal trans11-18:1 with fish oil, at a fraction of sunflower oil supplementation, may represent an effective strategy to maintain cis9,trans11-18:2 synthesis in mammary while reducing milk fat output and sparing energy.  相似文献   

7.
During biohydrogenation-induced milk fat depression (MFD), nutrients are spared from milk fat synthesis and are available for other metabolic uses. Acetate is the major carbon source spared and it may increase lipid synthesis in adipose tissue during MFD. The objective of this study was to compare the effect of trans-10,cis-12 conjugated linoleic acid (CLA) and the amount of acetate spared during CLA-induced MFD on adipose tissue lipogenesis. Nine multiparous, lactating, ruminally cannulated Holstein cows (244 ± 107 d in milk; 25 ± 8.4 kg of milk/d; mean ± standard deviation) were randomly assigned to treatments in a 3 × 3 Latin square design. Experimental periods were 4 d followed by a 10-d washout. Treatments were control (CON), ruminal infusion of acetate (AC; continuous infusion of 7 mol/d adjusted to pH 6.1 with sodium hydroxide), or abomasal infusion of CLA (10 g/d of both trans-10,cis-12 CLA and cis-9,trans-11 CLA). Dry matter intake, milk yield, and milk protein yield and percentage were not affected by treatments. Compared with CON, milk fat yield decreased 23% and fat percent decreased 28% in CLA, and milk fat yield increased 20% in AC. Concentration and yield of milk de novo synthesized fatty acids (<C16) were reduced and concentration of preformed fatty acids (>C16) was increased by CLA, compared with CON. Yield of de novo synthesized fatty acids and palmitic acid was increased by AC, compared with CON. Lipogenesis capacity of adipose tissue explants was decreased 72% by CLA, but was not affected by AC. Acetate oxidation by adipose explants was not affected by treatments. Treatments had no effect on expression of key lipogenic factors, lipogenic enzymes, and leptin; however, expression of fatty acid binding protein 4 was reduced in CLA compared with CON. Additionally, hormone-sensitive lipase and perilipin 1 were decreased by CLA and acetate. Plasma glucose and glucagon concentrations were not affected by treatments; however, CLA increased nonesterified fatty acids 17.7%, β-hydroxybutyrate 16.1%, and insulin 27.8% compared with CON, and AC increased plasma β-hydroxybutyrate 18%. In conclusion, during CLA-induced MFD in low-producing cow adipose tissue was sensitive to the anti-lipogenic effects of CLA, while spared acetate did not stimulate adipose lipogenesis. However, acetate may play an important role in stimulating lipogenesis and improving energy status in the mammary gland under normal conditions.  相似文献   

8.
The objective of this study was to assess the relationship between individual milk fatty acids (FA) and diet-induced milk fat depression (MFD) using principal component analysis (PCA) and multivariate analysis (MA). Cow treatment observations (n = 63) from 3 published feeding experiments with lactating dairy cows were used in the analyses. In the PCA, principal component loading plots 1 (PC1) and 2 (PC2) described 55.9% of the total variation in milk FA and fat concentrations. Saturated FA (14:0, 16:0, and 17:0) and milk fat percentage showed negative loading for PC1. Trans-18:1 isomers (trans-6+7+8 to trans-15), trans-7, cis-9 conjugated linoleic acid (CLA), and trans-10, cis-12 CLA showed positive (opposite) loading, suggesting a negative relationship between these isomers and milk fat percentage. Cis-11, trans-13 CLA and cis-9, trans-11 CLA were associated with the PC2 axes (neutral), indicating that they were not associated with MFD. Multivariate analysis with milk fat percentage as the dependent variable and individual PC1 positive loading variables showed a breakpoint relationship for trans-6+7+8-, trans-9-, trans-10-, and trans-13+14-18:1 and a linear relationship for trans-11-, trans-12-, trans-15-18:1, trans-10, cis-12 CLA, and trans-7, cis-9 CLA. Subsequent MA was conducted on 41 treatment means from 12 independent experiments from the literature, in which concentrations of trans-6+7+8-, trans-9-, trans-10-, and trans-11-18:1, and cis-9 trans;-11, and trans-10, cis-12 CLA were reported. Significant negative effects of trans-9-18:1, trans-10-18:1, and trans-10, cis-12 CLA on milk fat percentage were observed. In this study, the PCA and MA showed that among trans-18:1 isomers, trans-10-18:1 was the most negatively correlated to milk fat percentage. However, the threshold concentration related to maximum MFD indicated that the relative potency was greatest for trans-6+7+8- and lowest for trans-10-18:1. These results suggested that trans-6+7+8-18:1 might be more important than trans-10-18:1 in MFD. Principal component analysis also showed that trans-10, cis-12 and trans-7, cis-9 CLA were the isomers most negatively correlated to milk fat percentage, implying a possible role of trans-7, cis-9 CLA in MFD. Additional experiments are needed to establish whether trans-7-18:1 is involved in MFD or that its effects are mediated via the endogenously synthesized trans-7, cis-9 CLA.  相似文献   

9.
The efficacy of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well documented in dairy cows, but studies with other ruminant species are less convincing, and there have been no investigations of this in sheep. Therefore, the current study was designed to determine whether trans-10, cis-12 CLA would inhibit milk fat synthesis in sheep. Twenty multiparous ewes in early lactation were paired and randomly allocated to 2 treatments: grass hay plus concentrate either unsupplemented (control) or supplemented with lipid-encapsulated CLA to provide 2.4 g/d of trans-10, cis-12 CLA. The CLA dose was based on published responses of dairy cows extrapolated to ewes on a metabolic body weight basis. The experimental design was a 2-period crossover with 10-d treatment periods separated by a 10-d interval. Compared with the control, CLA supplementation reduced milk fat content from 6.4 to 4.9% and reduced fat yield from 95 to 80 g/d. The CLA treatment also increased milk yield from 1,471 to 1,611 g/d and increased protein yield from 68 to 73 g/d. Milk protein content and DMI were unaffected by treatment. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was < 0.01 and 0.12 g/100 g of fatty acids for the control and CLA treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the dietary supplement into milk fat was 3.8%. Results of the present study demonstrate that a CLA supplement containing trans-10, cis-12 CLA reduces milk fat synthesis in lactating sheep in a manner similar to dairy cows when fed at an equivalent dose (metabolic body weight basis). Furthermore, the nutrients spared by the reduction in milk fat coincided with an increase in milk and milk protein yield.  相似文献   

10.
It has been previously established that trans-10, cis-12 conjugated linoleic acid plays an important role in milk fat depression (MFD). However, in many situations of dietary induced MFD, the reduction in milk fat synthesis is much greater than what would be predicted based on the milk fat concentration of trans-10, cis-12 18:2. These observations suggest that other biohydrogenation intermediates could be implicated in MFD. The objective of this study was to evaluate the effects on milk fat synthesis of an intravenous administration of 2 conjugated diene 18:3 isomers (cis-9, trans-11, cis-15 and cis-9, trans-13, cis-15 18:3), which are intermediates in ruminal biohydrogenation of α-linolenic acid. Three multiparous Holstein dairy cows (days in milk = 189 ± 37 d; body weight = 640 ± 69 kg; mean ± standard deviation), fitted with indwelling jugular catheters, were randomly assigned to a 3 × 3 Latin square design. For the first 5 d of each period, cows were infused intravenously with a 15% lipid emulsion providing 1) cis-9, trans-11, cis-15 18:3 + cis-9, trans-13, cis-15 18:3 + trans-10, cis-12 18:2 (CD18:3 + CLA); 2) cis-9, cis-12, cis-15 18:3 + cis-9, cis-12 18:2 as a control (ALA + LA); or 3) cis-9, cis-12, cis-15 18:3 + trans-10, cis-12 18:2, as a positive control (ALA + CLA). Milk production was recorded, and milk was sampled daily at each milking for analyses of fat, protein, lactose, milk urea nitrogen, and somatic cell count. Dry matter intake, milk yield, and milk protein were not affected by treatment. Over the experimental period, milk fat content was decreased by 7% for cows that received either ALA + CLA or CD18:3 + CLA compared with ALA + LA. The temporal pattern of milk fat content showed a linear decrease during the infusion period for ALA + CLA and CD18:3 + CLA treatment groups. The transfer efficiencies of conjugated diene 18:3 isomers into milk fat averaged 39 and 32% for cis-9, trans-11, cis-15 18:3 and cis-9, trans-13, cis-15 18:3, respectively. The CD18:3 + CLA treatment had no effect on milk fat concentration beyond that attributable to its trans-10, cis-12 18:2 content. In conclusion, results from the current study offered no support for a role of either cis-9, trans-11, cis-15 18:3 or cis-9, trans-13, cis-15 in MFD.  相似文献   

11.
Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18:1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r2 = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4:0 to 18:0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20:5 n-3, and 22:6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18:1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Δ4-10 and Δ12-15), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.  相似文献   

12.
Holstein rumen-cannulated cows [n = 7; initial body weight (BW) 640.56 ± 71.43 kg] were fed a corn silage basal diet with 1 of 3 concentrates (C = control; P10 = 10% pigeon peas; P20 = 20% pigeon peas). Cows were randomly assigned to treatments in a replicated 3 × 3 Latin square and individually fed using Calan gates. Each experimental period was 21 d with 7 d for adaption and 14 d for sample collection. Ruminal fluid samples were taken the last day of each experimental period and analyzed for pH, ammonia, long-chain fatty acids, and volatile fatty acids (VFA). Consecutive a.m. and p.m. milk samples were taken during the last 2 wk of the 21-d period and analyzed for fat, protein, long-chain fatty acids, and somatic cell count. Dry matter intake (kg/d) was reduced during the second period and was greater for P10 diets. Milk protein was greater for cows fed P20 compared with P10. Energy-corrected milk was greater for cows fed the control diet compared with P10. Treatment had no effect on milk yield. Ruminal fluid pH decreased over sampling times; however, pH remained at or above 5.5. Diets did not affect ruminal fluid pH; however, pH was different for sampling periods. Ruminal ammonia decreased until 8 h postfeeding at which time it peaked consistent with changes in ammonia concentrations that usually peak 3 to 5 h postfeeding on diets high in plant proteins. Dietary treatments altered ruminal fluid VFA with reduced concentrations of acetate and greater concentrations of propionate for control diet, resulting in reduced acetate:propionate ratio. Isobutyrate exhibited an hour by treatment interaction, in which isobutyrate decreased until 8 h postfeeding and then tended to be greater for P10 than for other treatments. Animals fed the P10 diet had greater concentrations of ruminal isovalerate. Ruminal cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid (CLA) isomers were not affected by dietary treatments. The P10 diet had greatest ruminal synthesis of cis-9,trans-11, but control cows had greatest ruminal synthesis of trans-10,cis-12. Milk CLA isomers were similar among treatments. Trends were observed for greater cis-9,trans-11 and trans-10,cis-12 for the P10 diet. Pigeon peas may be used as a protein supplement in dairy diets without affecting milk production, dry matter intake, or ruminal environment when they replace corn and soybean meal.  相似文献   

13.
A recent study reported a 0.4 percentage unit increase in milk fat of lactating dairy cattle when dietary K was increased from 1.2 to 2% with potassium carbonate. Because milk fat yield has been associated with ruminal production of certain conjugated linoleic acid (CLA) isomers, 2 studies were conducted to determine if increasing potassium carbonate in the rumen would alter patterns of fermentation and biohydrogenation. In experiment 1, 5 dual-flow continuous fermenters were injected just before each feeding with a 10% (wt/wt) stock potassium carbonate solution to provide the equivalent of 1.1 (K1), 2.2 (K2), and 3.3 (K3) % of diet dry matter (DM) as added K. One of the remaining fermenters received no K (K0) and the last fermenter (NaOH) was injected with adequate NaOH stock solution (10%, wt/wt) to match the pH observed for the K3 treatment. For experiment 2, 6 dual-flow continuous fermenters were used to evaluate 6 treatments arranged in a 2 × 3 factorial to examine 2 levels of soybean oil (0 and 3.64% of diet DM) and added K at 0, 1.6, and 3.3% of diet DM. In both experiments, fermenters were fed 55 to 57 g of DM/d of a typical dairy diet consisting of 1:1 forage (10% alfalfa hay and 90% corn silage) to concentrate mix in 2 equal portions at 0800 and 1630 h, and fed the respective diets for 10-d periods. Potassium carbonate addition increased pH in both experiments. Acetate:propionate ratio and pH in experiment 1 increased linearly for K0 to K3. Acetate:propionate ratio was lower for NaOH compared with K3 but the pH was the same. The trans-11 18:1 and cis-9,trans-11 CLA production rates (mg/d) increased linearly from K0 to K3, but K3 and NaOH did not differ. Production of trans-10 18:1 decreased and that of trans-10,cis-12 tended to decrease from K0 to K3, but production of trans-10,cis-12 CLA remained high for NaOH. Addition of K to the cultures in experiment 2 decreased propionate and increased acetate and acetate:propionate ratio for the 0% fat diet but not for the 3.64% fat diet. Addition of K increased stearic acid and cis-9,trans-11 CLA but decreased daily production of trans-10 C18:1 and trans-10,cis-12 CLA. The results indicate that increasing potassium carbonate in the diet shifts both fermentation and biohydrogenation pathways toward higher milk fat percentage in dairy cows, but the effects are only explained in part by elevation of pH.  相似文献   

14.
15.
Dietary supplements of conjugated linoleic acid (CLA) containing trans-10, cis-12 CLA reduce milk fat synthesis in lactating goats. This study investigated effects of milk fat depression induced by dietary CLA supplements on the properties of semi-hard goat cheese. Thirty Alpine does were randomly assigned to 1 of 3 groups and fed diets with lipid-encapsulated CLA that provided trans-10, cis-12 CLA at 0 (control), 3 (CLA-1), and 6 g/d (CLA-2). The experiment was a 3 × 3 Latin square design. Periods were 2 wk in length, each separated by 2-wk periods without CLA supplements. Bulk milk was collected on d 3 and 13 of each of 3 periods for cheese manufacture. The largest decrease (23.2%) in milk fat content, induced by the high dosage (6 g/d per doe) of trans-10, cis-12 CLA supplementation at d 13 of treatment, resulted in decreases of cheese yield and moisture of 10.2 and 10.0%, respectively. Although CLA supplementation increased the hardness, springiness, and chewiness, and decreased the cohesiveness and adhesiveness of cheeses, no obvious defects were detected and no significant differences were found in sensory scores among cheeses. In conclusion, milk fat depression induced by a dietary CLA supplement containing trans-10, cis-12 CLA resulted in changes of fat-to-protein ratio in cheese milk and consequently affected properties of semi-hard goat cheese.  相似文献   

16.
Although milk fat depression (MFD) has been observed and described since the beginning of the last century, all the molecular and biochemical mechanisms involved are still not completely understood. Some fatty acids (FA) originating during rumen biohydrogenation have been proposed as causative elements of MFD. However, contradictory results were obtained when studying the effect of single FA on MFD. An alternative could be the simultaneous evaluation of the effect of many FA using a multivariate approach. The aim of this study was to evaluate the relationship between individual milk FA of ruminal origin and MFD using canonical discriminant analysis, a multivariate technique able to distinguish 2 or more groups on the basis of a pool of variables. In a commercial dairy herd, a diet containing 26% starch on a DM basis induced an unintentional MFD syndrome in 14 cows out of 40. Milk yielded by these 14 animals showed a fat content lower than 50% of the ordinary value, whereas milk production and protein content were normal. The remaining 26 cows secreted typical milk fat content and therefore were considered the control group, even though they ate the same diet. The stepwise discriminant analysis selected 14 milk FA of ruminal origin most able to distinguish the 2 groups. This restricted pool of FA was used, as variables, in a run of the canonical discriminant analysis that was able to significantly discriminate between the 2 groups. Out of the 14 FA, 5 conjugated linoleic acid isomers (C18:2 trans-10,trans-12, C18:2 trans-8,trans-10, C18:2 trans-11,cis-13, C18:2 cis-9,cis-11, C18:2 cis-10,cis-12) and C15:0 iso were more related to the control group, whereas C18:2 trans-10,cis-12, C16:1 trans-6–7, C16:1 trans-9, C18:1 trans-6–8, C18:1 trans-9, C18:1 trans-10, C18:1 cis-11, and C18:3n-3 were positively associated with the MFD group, allowing a complete discrimination. On the basis of these results, we can conclude that (1) the shift of ruminal biohydrogenation from C18:1 trans-11 to C18:1 trans-10 seemed to be strongly associated with MFD; (2) at the same time, other C18:1 trans isomers showed a similar association; (3) on the contrary, conjugated linoleic acid isomers other than C18:2 trans-10,cis-12 seemed to be associated with a normal fat secretion. Results confirmed that MFD is the consequence of a combined effect of the outflow of many ruminal FA, which collectively affect mammary fat synthesis. Because the animals of the 2 groups were fed the same diet, these results suggested that factors other than diet are involved in the MFD syndrome. Feeding behavior (i.e., ability to select dietary ingredients in a total mixed ration), rumen environment and the composition of ruminal bacteria are additional factors able to modify the products of rumen biohydrogenation. Results of the present work confirmed that the multivariate approach can be a useful tool to evaluate a metabolic pathway that involves several parameters, providing interesting suggestions about the role of some FA involved in MFD. However, results about the MFD syndrome obtained in the present research require a deep molecular investigation to be confirmed.  相似文献   

17.
The effect of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well described in dairy cows and sheep. Studies on lactating goats, however, remain inconclusive. Therefore, the current study investigated the efficacy of a lipid-encapsulated trans-10, cis-12 CLA supplement (LE-CLA) on milk production and milk fatty acid profile in dairy goats. Thirty multiparous Alpine lactating goats in late lactation were used in a 3 × 3 Latin square design (14-d treatment periods separated by 14-d intervals). Does were fed a total mixed ration of Bermuda grass hay, dehydrated alfalfa pellets, and concentrate. Does were randomly allocated to 3 treatments: A) unsupplemented (control), B) supplemented with 30 g/d of LE-CLA (low dose; CLA-1), and C) supplemented with 60 g/d of LE-CLA (high dose; CLA-2). Milk yield, dry matter intake, and milk protein content and yield were unaffected by treatment. Compared with the control, milk fat yield was reduced 8% by the CLA-1 treatment and 21% by the CLA-2 treatment, with milk fat content reduced 5 and 18% by the CLA-1 and CLA-2 treatments, respectively. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was 0.03, 0.09, and 0.19 g/100 g of fatty acids for the control, CLA-1, and CLA-2 treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the 2 levels of CLA supplement into milk fat was not different between treatments and averaged 1.85%. In conclusion, trans-10, cis-12 CLA reduced milk fat synthesis in lactating dairy goats in a manner similar to that observed for lactating dairy cows and dairy sheep. Dose-response comparisons, however, suggest that the degree of reduction in milk fat synthesis is less in dairy goats compared with dairy cows and dairy sheep.  相似文献   

18.
19.
《Journal of dairy science》2019,102(6):5079-5093
Diet-induced milk fat depression (MFD) is a multifactorial disorder that can be triggered by a variety of conditions. Feeding high amounts of starch and unsaturated fatty acids has been shown to reduce milk fat yield and composition, as well as alter ruminal biohydrogenation patterns. However, little is known about how starch degradability in the rumen influences recovery from diet-induced MFD and if production of milk fat–inhibiting isomers will persist following an episode of MFD. The objective of this study was to evaluate production performance and ruminal fermentation in cows recovering from MFD when corn with a low or high starch degradability is fed. Six ruminally fistulated Holstein cows were used in a crossover design with 2 periods. During each period, MFD was induced for 10 d by feeding a diet with low fiber, high starch, and high unsaturated fatty acid. The polyunsaturated fatty acid concentration of the diet during the induction phase was modified primarily through inclusion of soybean oil. Following induction, cows were switched to either a high degradable starch recovery diet (HDS) or a low degradable starch recovery diet (LDS) for 18 d. The 7-h starch degradability was 66.5% for LDS and 87.8% for HDS. Milk was collected every 3 d for component and fatty acid analysis. On d 0, 4, 7, 10, 16, 22, and 28 of each period, ruminal pH and rumen fluid were collected every 2 h. Milk fat yield and composition was reduced during MFD induction and progressively increased by day in both HDS and LDS during recovery. Dry matter intake was similar among treatments and increased steadily over time during recovery. Preformed fatty acids were greater for HDS-fed animals, and de novo fatty acid in milk fat was greater for LDS-fed animals. Milk trans-10 C18:1 tended to be greater for HDS, and trans-10,cis-12 conjugated linoleic acid was significantly greater for HDS. cis-9,trans-11 conjugated linoleic acid was not affected by starch degradability during recovery. Total volatile fatty acids, butyrate, and valerate tended to differ or differed with recovery treatment, but ruminal pH and ammonia concentration were unaffected. The HDS diet responded similarly to the LDS diet during recovery with regard to milk fat percentage, but milk and fat yield tended to consistently be lower in HDS. When considering approaches to ameliorate diet-induced MFD, the degradability of the starch within rations should be evaluated. Although animal performance was similar, some trans fatty acid isomers were persistent in the milk through the recovery phase with HDS-fed animals, suggesting that milk fat synthesis might be potentially inhibited and biohydrogenation pathways modified in the rumen following an episode of MFD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号