首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Occurrence of parasites on fruits and vegetables in Norway.   总被引:7,自引:0,他引:7  
Between August 1999 and January 2001, samples of various fruits and vegetables obtained within Norway were analyzed by published methods for parasite contamination. Neither Cyclospora oocysts nor Ascaris (or other helminth) eggs were detected on any of the samples examined for these parasites. However, of the 475 samples examined for Cryptosporidium oocysts and Giardia cysts, 29 (6%) were found to be positive. No samples were positive for both parasites. Of the 19 Cryptosporidium-positive samples. 5 (26%) were in lettuce, and 14 (74%) in mung bean sprouts. Of the 10 Giardia-positive samples, 2 (20%) were in dill, 2 (20%) in lettuce, 3 (30%) in mung bean sprouts, 1 (10%) in radish sprouts, and 2 (20%) in strawberries. Mung bean sprouts were significantly more likely to be contaminated with Cryptosporidium oocysts or Giardia cysts than the other fruits and vegetables. Concentrations of Cryptosporidium and Giardia detected were generally low (mean of approximately 3 [oo]cysts per 100 g produce). Although some of the contaminated produce was imported (the majority, if sprouted seeds are excluded), there was no association between imported produce and detection of parasites. Crvptosporidium oocysts and Giardia cysts were also detected in water samples concerned with field irrigation and production of bean sprouts within Norway. This is the first time that parasites have been detected on vegetables and fruit obtained in a highly developed. wealthy country, without there being an outbreak situation. These findings may have important implications for global food safety.  相似文献   

2.
The intestinal parasites Cryptosporidium and Giardia cause gastro-enteritis in humans and can be transmitted via contaminated water. Oysters are filter feeders that have been demonstrated to accumulate pathogens such as Salmonella, Vibrio, norovirus and Cryptosporidium from contaminated water and cause foodborne infections. Oysters are economically important shellfish that are generally consumed raw. Commercial and non-commercial oysters (Crassostrea gigas) and oyster culture water from the Oosterschelde, The Netherlands, were examined for the presence of Cryptosporidium oocysts and Giardia cysts. Nine of 133 (6.7%) oysters from two non-commercial harvesting sites contained Cryptosporidium, Giardia or both. Six of 46 (13.0%) commercial oysters harboured Cryptosporidium or Giardia in their intestines. Data on the viability of (oo)cysts recovered from Oosterschelde oysters were not obtained, however viable (oo)cysts were detected in surface waters that enter the Oosterschelde oyster harvesting areas. The detection of Cryptosporidium and Giardia in oysters destined for human consumption has implications for public health only when human pathogenic (oo)cysts that have preserved infectivity during their stay in a marine environment are present. Our data suggest that consumption of raw oysters from the Oosterschelde may occasionally lead to cases of gastro-intestinal illness.  相似文献   

3.
Waterborne outbreaks caused by Cryptosporidium and Giardia are well documented, while the public health implications for foodborne illness from these parasites have not been adequately considered. Cryptosporidium and Giardia are common in domestic livestock, where young animals can have a high prevalence of infection, shedding large numbers of oocysts and cysts. Molecular epidemiological studies have advanced our knowledge on the distribution of Cryptosporidium and Giardia species and genotypes in specific livestock. This has enabled better source tracking of contaminated foods. Livestock generate large volumes of fecal waste, which can contaminate the environment with (oo)cysts. Evidence suggests that livestock, particularly cattle, play a significant role in food contamination, leading to outbreaks of cryptosporidiosis. However, foodborne giardiasis seems to originate primarily from anthroponotic sources. Foodborne cryptosporidiosis and giardiasis are underreported because of the limited knowledge of the zoonotic potential and public health implications. Methods more sensitive and cheaper are needed to detect the often-low numbers of (oo)cysts in contaminated food and water. As the environmental burden of Cryptosporidium oocysts and Giardia cysts from livestock waste increases with the projected increase in animal agriculture, public health is further compromised. Contamination of food by livestock feces containing Cryptosporidium oocysts and Giardia cysts could occur via routes that span the entire food production continuum. Intervention strategies aimed at preventing food contamination with Cryptosporidium and Giardia will require an integrated approach based on knowledge of the potential points of entry for these parasites into the food chain. This review examines the potential for foodborne illness from Cryptosporidium and Giardia from livestock sources and discusses possible mechanisms for prevention and control.  相似文献   

4.
5.
Published techniques for recovering parasites from fruit and vegetables are generally inadequate, with low and variable recovery efficiencies. Here we describe an improved methodology for analyzing fruit and vegetables for Giardia cysts, Cryptosporidium oocysts, and Ascaris eggs. The method includes washing procedures, sonication, and, for Giardia and Cryptosporidium, immunomagnetic separation. Identification is by immunofluorescence (Giardia and Cryptosporidium) or brightfield microscopy (Ascaris). Recovery efficiencies from lettuce, Chinese leaves, and strawberries were found to be approximately 67% for Giardia, 42% for Cryptosporidium, and 72% for Ascaris. Recovery efficiencies from bean sprouts tended to be more variable and lower. This could be due to material removed with the parasites during the washing procedures, which, in turn, appeared related to the age of the bean sprouts. It is therefore recommended that fruit and vegetables should be as fresh as possible when analyzed for parasites.  相似文献   

6.
The occurrence of human pathogenic parasites in irrigation waters used for food crops traditionally eaten raw was investigated. The polymerase chain reaction was used to detect human pathogenic microsporidia in irrigation waters from the United States and several Central American countries. In addition, the occurrence of both Cryptosporidium oocysts and Giardia cysts was determined by immunofluorescent techniques. Twenty-eight percent of the irrigation water samples tested positive for microsporidia, 60% tested positive for Giardia cysts, and 36% tested positive for Cryptosporidium oocysts. The average concentrations in samples from Central America containing Giardia cysts and Cryptosporidium oocysts were 559 cysts and 227 oocysts per 100 liters. In samples from the United States, averages of 25 Giardia cysts per 100 liters and <19 (average detection limit) Cryptosporidium oocysts per 100 liters were detected. Two of the samples that were positive for microsporidia were sequenced, and subsequent database homology comparisons allowed the presumptive identification of two human pathogenic species, Encephalitozoon intestinalis (94% homology) and Pleistophora spp. (89% homology). The presence of human pathogenic parasites in irrigation waters used in the production of crops traditionally consumed raw suggests that there may be a risk of infection to consumers who come in contact with or eat these products.  相似文献   

7.
As part of larger survey of microbial contamination of fruits and vegetables in Norway, four different sprouted seed products were analysed for bacterial and parasitic contaminants (n = 300 for bacterial analyses and n = from 17 to 171 for parasite analyses, depending on parasite). Escherichia coli O157, Salmonella, Listeria monocytogenes, Cyclospora oocysts, Ascaris eggs and other helminth parasites were not detected in any of the sprout samples. Thermotolerant coliform bacteria (TCB) were isolated from approximately 25% of the sprout samples, with the highest percentage of TCB positive samples in alfalfa sprouts. Most TCB were Enterobacter spp. and Klebsiella. E. coli was isolated from 8 of 62 TCB positive mung bean sprout samples. Cryptosporidium oocysts were detected in 8% of the sprout samples and Giardia cysts were detected in 2% of the samples. All the Cryptosporidium positive samples, and most of the Giardia positive samples, were mung bean sprouts. Parasite concentrations in positive samples were low (between 1 and 3 oocysts/cysts per 50 g sprouts). Sprout irrigation water was also analysed for microbial contaminants. E. coli O157 and L. monocytogenes were not detected. TCB were isolated from approximately 40% of the water samples. Salmonella reading was isolated from three samples of spent irrigation water on 3 consecutive days. Cryptosporidium and Giardia were also isolated from spent irrigation water. Additionally, eight samples of unsprouted mung bean seed were analysed for Cryptosporidium oocysts and Giardia cysts. One or both of these parasites were detected in six of the unsprouted seed samples at concentrations of between 1 and 5 oocysts/cysts per 100 g unsprouted seed. Whilst our results support spent irrigation water as the most suitable matrix for testing for bacteria, unsprouted seed is considered the more useful matrix for analysing for parasite contaminants.  相似文献   

8.
A study was conducted to identify factors associated with the likelihood of detecting Giardia spp. and Cryptosporidium spp. in the soil of dairy farms in a watershed area. A total of 37 farms were visited, and 782 soil samples were collected from targeted areas on these farms. The samples were analyzed for the presence of Cryptosporidium spp. oocysts, Giardia spp. cysts, percent moisture content, and pH. Logistic regression analysis was used to identify risk factors associated with the likelihood of the presence of these organisms. The use of the land at the sampling site was associated with the likelihood of environmental contamination with Cryptosporidium spp. Barn cleaner equipment area and agricultural fields were associated with increased likelihood of environmental contamination with Cryptosporidium spp. The risk of environmental contamination decreased with the pH of the soil and with the score of the potential likelihood of Cryptosporidium spp. The size of the sampling site, as determined by the sampling design, in square feet, was associated nonlinearly with the risk of detecting Cryptosporidium spp. The likelihood of the Giardia cyst in the soil increased with the prevalence of Giardia spp. in animals (i.e., 18 to 39%). As the size of the farm increased, there was decreased risk of Giardia spp. in the soil, and sampling sites which were covered with brush or bare soil showed a decrease in likelihood of detecting Giardia spp. when compared to land which had managed grass. The number of cattle on the farm less than 6 mo of age was negatively associated with the risk of detecting Giardia spp. in the soil, and the percent moisture content was positively associated with the risk of detecting Giardia spp. Our study showed that these two protozoan exist in dairy farm soil at different rates, and this risk could be modified by manipulating the pH of the soil.  相似文献   

9.
While the risk from pathogenic microorganisms in foods has been recognized for hundreds of years, bacterial agents are generally implicated as the contaminants. Although many outbreaks of gastroenteritis caused by protozoan pathogens have occurred, it is only in the last 3 years that attention has focused on protozoan association with foodborne transmission. Recognized as waterborne parasites, Giardia, Cryptosporidium, and Cyclospora have now been associated with several foodborne outbreaks. The oocysts and cysts of these organisms can persist and survive for long periods of time both in water and on foods. While Cyclospora oocysts require a maturation period, Cryptosporidium oocysts and Giardia cysts are immediately infectious upon excretion from the previous host. As a result, these parasites have emerged as public health risks and have become a concern to the food industry. More than 200 cases of foodborne giardiasis (seven outbreaks) were reported from 1979 to 1990. Four foodborne Cryptosporidium outbreaks (with a total of 252 cases) have been documented since 1993. Cyclospora caused a series of sporadic outbreaks of cyclosporasis throughout North America that have affected over 3,038 people since 1995. Control and prevention of protozoan foodborne disease depends upon our ability to prevent, remove, or kill protozoan contaminants. This review will address the biology, foodborne and waterborne transmission, survival, and methods for detection and control of Giardia, Cryptosporidium, and Cyclospora.  相似文献   

10.
The aim of this study was to investigate the potential of using Al-Holy-Rasco (AR) medium, a novel broth for detection and isolation of Cronobacter spp. in infant formula milk (IFM). The new medium's composition is generic brain heart infusion broth with the addition of 1% NaCl, 15% sucrose, and 0.80 g/liter sodium deoxycholate as selective ingredients. AR broth outperformed Enterobacteriaceae enrichment broth (EE), Enterobacter sakazakii enrichment broth (ESE), modified lauryl sulfate broth, and milk as enrichment media to stimulate the growth of a cocktail of 10 strains of Cronobacter. Additionally, AR broth significantly suppressed the growth of competing non-Cronobacter Enterobacteriaceae as compared with EE, ESE, modified lauryl sulfate broth, and milk. The recovery of desiccated Cronobacter (1 to 5,000 CFU/100 g) from powdered IFM in the presence of competing non-Cronobacter Enterobacteriaceae was determined by EE, ESE, and AR broth with 10 and 15% sucrose. AR broth with 15% sucrose outperformed all other examined broths and recovered Cronobacter from all samples tested at all Cronobacter concentrations. AR broth must be validated before it can be used for rapid detection and isolation of Cronobacter from powdered IFM.  相似文献   

11.
The human and animal pathogen Giardia lamblia is a waterborne risk to public health because the cysts are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Given the recently recognized efficacy of UV irradiation against Cryptosporidium parvum oocysts, the inactivation of G. lamblia cysts in buffered saline water at pH 7.3 and room temperature by near monochromatic (254 nm) UV irradiation from low-pressure mercury vapor lamps was determined using a "collimated beam" exposure system. Reduction of G. lamblia infectivity for gerbils was very rapid and extensive, reaching a detection limit of >4 log within a dose of 10 JM-2. The ability of UV-irradiated G. lamblia cysts to repair UV-induced damage following typical drinking water and wastewater doses of 160 and 400 JM(-2) was also investigated using experimental protocols typical for bacterial and eucaryotic DNA repair under both light and dark conditions. The infectivity reduction of G. lamblia cysts at these UV doses remained unchanged after exposure to repair conditions. Therefore, no phenotypic evidence of either light or dark repair of DNA damage caused by LP UV irradiation of cysts was observed at the UV doses tested. We conclude that UV disinfection at practical doses achieves appreciable (much greater than 4 log) inactivation of G. lamblia cysts in water with no evidence of DNA repair leading to infectivity reactivation.  相似文献   

12.
A multiplexed nested-PCR procedure (ABC-PCR) previously developed to detect Cryptosporidium spp. and Giardia duodenalis assemblages A and B in whole human faeces was applied to DNA extracted from filter-feeding molluscs. Species of Cryptosporidium and G. duodenalis were identified by restriction fragment analysis of the PCR products and by DNA sequencing. The extraction and ABC-PCR procedures were shown to be suitable for application to shellfish by amplification of specific target sequences using DNA from Cryptosporidium parvum genotype 2 and G. duodenalis assemblages A and B which were spiked into DNA extracted from mussels. Using 49 molluscan shellfish specimens (18 clam, 22 mussel and 9 oyster samples) from Spain, cryptosporidial oocysts were detected in 56% by immunofluorescence microscopy, and in 44% by ABC-PCR. For detection of Cryptosporidium, there was a significant association, but not total agreement, between the results of microscopy and PCR. G. duodenalis assemblage B was detected from one oyster sample by PCR. Amongst 38 specimens (20 mussel and 18 cockle samples) collected in the UK and tested by the ABC-PCR, G. duodenalis was not detected, and Cryptosporidium was detected in 11% of the samples. Overall, the 26 samples where Cryptosporidium was detected, C. hominis/C. parvum genotype 1 was detected in 1, C. parvum genotype 2 in 22, and the remaining three samples contained either sequences similar to C. parvum genotype 2 or heterogeneous mixtures of Cryptosporidium species. There was no significant association between the level of Escherichia coli detected by conventional microbiological methods and the presence of Cryptosporidium detected by ABC-PCR.  相似文献   

13.
Investigation of shellfish for Cryptosporidium oocysts and Giardia cysts is of public health interest because shellfish may concentrate these pathogens in their bodies, and because shellfish are frequently eaten raw or lightly cooked. To date, the methods used for the analysis of shellfish for these parasites are based on those originally designed for water concentrates or fecal samples; the reported recovery efficiencies are frequently relatively low and the amount of sample examined is small. Here, we describe the development and use of a pepsin digestion method for analyzing shellfish samples for these parasites. The conditions of the isolation method did not affect subsequent parasite detection by immunofluorescent antibody test, and allowed examination of 3-g samples of shellfish homogenate, with recovery efficiencies from blue mussel homogenates of between 70 and 80%, and similar recoveries from horse mussel and oyster homogenates. Although exposure of the parasites to the conditions used in the technique affected their viability, as assessed by vital dyes, the maximum reduction in viability after 1-h incubation in digestion solution was 20%. In a preliminary survey of shellfish collected from the Norwegian coast, Cryptosporidium oocysts were detected in blue mussel homogenates in 6 (43%) of 14 batches and Giardia cysts in 7 (50%) of these batches. However, this relatively high occurrence, compared with other surveys, may be due to the higher recovery efficiency of the new method, and the relatively large sample size analyzed. A more comprehensive study of the occurrence of these parasites in shellfish would be of pertinence to the Norwegian shellfish industry.  相似文献   

14.
A comparative study of enzyme-linked fluorescent assay (ELFA)-based methods and real-time polymerase chain reaction (PCR)-based methods using three and two different sample preparation protocols, respectively, and the standard culture-based method EN ISO 6579:2002/Amd1:2007, for the detection of Salmonella spp. in chicken feces, was performed on 20 artificially and 68 naturally contaminated chicken feces. Selectivity, relative specificity, relative accuracy, relative sensitivity, and relative detection level were determined. According to criteria established in the methods comparison study included in EN ISO 16140:2003 for validation of alternative microbiological methods, the ELFA-based methods (V1 and V2) as well as a real-time PCR method (PCR2) were comparable to the reference method for the detection of Salmonella in chicken feces. They provided results in 48 h and presented a high sensitivity (97% for all of them). The three methods showed a relative specificity of 94%, V1 being the method which presented the highest relative accuracy (96%). While detection level for V2 and reference method was between 3 and 13 CFU/25 g, PCR2 method was able to detect down to 3 CFU/25 g. In conclusion, both the real-time PCR and the ELFA-based assays can be used as rapid and user-friendly screening methods for detection of Salmonella spp. in chicken feces.  相似文献   

15.
The genus Alternaria is considered one of the most important fungal contaminants of vegetables, fruits, and cereals, producing several mycotoxins that can withstand food processing methods. Conventional methods for Alternaria identification and enumeration are laborious and time-consuming, and they might not detect toxigenic molds inactivated by food processing. In this study, a PCR method has been developed for the rapid identification of Alternaria spp. DNA in foodstuffs, based on oligonucleotide primers targeting the internal transcribed spacer (ITS) 1 and ITS2 regions of the rRNA gene. The specificity of the Alternaria-specific primer pair designed (Dir1ITSAlt-Inv1ITSAlt) was verified by PCR analysis of DNA from various Alternaria spp., and also from several fungal, bacterial, yeast, animal, and plant species. The detection limit of the method was 10(2) CFU/ml in viable culture, heated culture, or experimentally inoculated tomato pulp. The applicability of the method for detection of Alternaria spp. DNA in foodstuffs was assessed by testing several commercial samples. Alternaria DNA was detected in 100% of spoiled tomato samples, 8% of tomato products, and 36.4% of cereal-based infant food samples analyzed.  相似文献   

16.
Rapid and specific detection of Cronobacter spp. in powdered infant formula milk (IFM) is of great importance for health and safety reasons. In the present study, two rapid and specific methods, the immunochromatographic strip (ICT) and the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), were tested for the detection of Cronobacter spp. in IFM. IFM samples spiked by Cronobacter spp. were correctly detected as positive by both methods. These results were verified by the classical cultivation microbiological method (ISO/TS 22964:2006). All three methods were used for the analyses of 13 IMF samples from a local market with identical results. Only one IFM sample was found to be positive. Both tested methods considerably reduced the total detection time, to 24?h (ICT) and 46?h (MALDI-TOF MS), whereas the reference ISO/TS 22964:2006 method needs 140?h.  相似文献   

17.
Arcobacters are considered potential emerging food and waterborne pathogens. However, there is no data on the presence of Arcobacter spp. in fresh vegetables. Therefore the objective of this research was to study the presence of Arcobacter spp. in fresh lettuces.Fifty fresh lettuces purchased from different local shops in Valencia (Spain) were analyzed. The assay was performed simultaneously by cultural and molecular methods. Isolates were identified by real-time, multiplex PCR and restriction fragment length polymorphism analysis of PCR-amplified DNA fragment (PCR-RFLP). Finally, all the isolates were genotyped using the randomly amplified polymorphic DNA (RAPD-PCR) method.Arcobacter sp. was detected in 10 of the 50 samples (20%) by real-time PCR, being A. butzleri the unique detected species by mPCR. The detection levels obtained by conventional PCR (7 samples/50, 14%) were slightly lower. These seven samples were found to be positive also by culture isolation. All 19 obtained isolates were identified as A. butzleri by multiplex PCR and PCR-RFLP. Great genetic heterogeneity among the isolates was observed by RAPD-PCR profiling.To our knowledge, this is the first study in which Arcobacter spp. is detected in fresh vegetables such as lettuces. Although these foods are generally considered safe, given the large quantities consumed and the fact that further cooking is absent, lettuce could be a source of Arcobacters of public health concern.  相似文献   

18.
食品微生物安全检测技术   总被引:2,自引:0,他引:2  
曾庆梅  张冬冬  杨毅  胡斌  徐迪  韩抒  潘宗琴 《食品科学》2007,28(10):632-637
为了应对快速、准确的食品微生物安全检测方法的需求,本文介绍了许多食品安全检测的新方法与新技术,包括快速生化检测方法、免疫学技术、代谢学技术、传感器技术、流式细胞术、PCR技术、基因探针技术、生物芯片,并概述这些检测技术对食品微生物安全的重要作用及影响。  相似文献   

19.
Enterobactersakazakii is an emerging pathogen associated with life-threatening neonatal infections resulting from the consumption of contaminated powdered infant formula milk (IFM). Recent taxonomic analyses have determined that E. sakazakii comprises a number of genomospecies, and it has been proposed that E. sakazakii be reclassified as a novel genus, "Cronobacter". Accurate methods are required for the rapid detection and identification of this group of micro-organisms, since even low cell numbers have been reported to cause disease. The aim of this study was to evaluate various E. sakazakii detection methods in order to ascertain the most suitable method for detection and identification of these pathogenic agents. Samples from IFM and the environment were evaluated for the presence of E. sakazakii using the isolation steps (pre-enrichment, enrichment and selection) described in the Food and Drug Administration (FDA) method for E. sakazakii detection. Sixty-four isolates (50 from IFM and 14 from the environment) were selected from tryptone soy agar (TSA), regardless of colony appearance, and these isolates were identified by 16S ribosomal DNA (rDNA) sequencing. Thereafter, different culture-dependent and culture-independent methods were evaluated to accurately detect and identify the E. sakazakii isolates. These methods included the assessment of yellow pigment production on TSA, typical colonies on chromogenic Druggan-Forsythe-Iversen (DFI) and Chromocult(R) Enterobacter sakazakii (CES) media and polymerase chain reaction (PCR) using six different species-specific primer pairs described in the literature. Identification of E. sakazakii using yellow pigment production was demonstrated to have a low sensitivity, specificity and accuracy (87%, 71% and 74%, respectively), which lowers the suitability of the FDA method. Chromogenic DFI and CES media were sensitive, specific and accurate (100%, 98% and 98%, respectively) for the detection of E. sakazakii. The specificity of the PCR amplifications ranged from 8% to 92%, emphasising the need for rigorous primer testing against closely related species. Of the primer pairs evaluated, Esakf/Esakr were the most suitable for E. sakazakii detection and identification. The detection limit of Esakf/Esakr was found to be 10(4) CFU/ml. This study demonstrated that no single method was capable of unambiguously confirming the presence and identity of E. sakazakii isolates, that each method had inherent advantages and disadvantages, and that in most cases several methods were required for accurate detection and identification. Further, it was demonstrated that the current FDA method for E. sakazakii detection should be revised in the light of the availability of more sensitive, specific and accurate detection methods.  相似文献   

20.
Foodborne protozoan parasites   总被引:10,自引:0,他引:10  
This report addresses Cryptosporidium, Giardia, Cyclospora, and more briefly, Toxoplasma as the main parasitic protozoa of concern to food production worldwide. Other parasitic protozoa may be spread in food or water but are not considered as great a risk to food manufacture. The protozoan parasites Cryptosporidium, Giardia, and Cyclospora have proven potential to cause waterborne and foodborne disease. Toxoplasma gondii has been considered a risk in specific cases, but humans are not its primary host. Cryptosporidium and Giardia are widespread in the environment, particularly the aquatic environment, and major outbreaks of cryptosporidiosis and giardiasis have occurred as a result of contaminated drinking water. Large outbreaks of waterborne cyclosporiasis have not been identified. Cryptosporidium, Giardia, and Cyclospora have potential significance in the preparation and consumption of fresh produce and in catering practice, in which ready-to-eat foods may be served that have not received heat treatment. None of the three organisms Cryptosporidium, Giardia, and Cyclospora has been shown to be a problem for heat processed food or tap water that has undergone appropriate treatment at a water treatment works. All three are sensitive to standard pasteurisation techniques. Although humans are not a primary host for T. gondii, the potential exists for both waterborne and foodborne toxoplasmosis. Parasitic protozoa do not multiply in foods, but they may survive in or on moist foods for months in cool, damp environments. Their ecology makes control of these parasites difficult. For general control of parasitic protozoa in the food chain, the following steps are necessary: - Follow good hygienic practice in food service and catering industries.- Minimise dissemination of cysts and oocysts in the farming environment and via human waste management.- Include these microorganisms in Hazard Analysis Critical Control Point (HACCP) plans of water suppliers, industries or sectors that use fresh produce, and operations in which contaminated process or ingredient water could end up in the product (e.g., where water supplies may become contaminated).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号