首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
文章对1064 nm波段泵浦掺铥光纤激光器进行理论分析,以获得到对实际研究有用的结论.先从理论分析计算了1064 nm泵浦掺铥光纤激光器的粒子速率方程和传输方程,并在传输方程中考虑了泵浦光和激光本征吸收影响.利用matlab软件理论模拟不同长度光纤的正反向泵浦光和激光在光纤中的分布.模拟讨论了输出功率与最佳光纤长度的关系,以及激光本征吸收系数和掺铥离子浓度对输出功率的影响.最佳光纤长度时的激光输出功率最高.考虑激光本征吸收是合理的,较小的本征吸收有较高的最大的输出功率.存在一个最佳的掺杂离子浓度使得输出功率最大.  相似文献   

2.
1064nm激光和355nm激光同时辐照DKDP晶体的耦合预处理效应   总被引:2,自引:0,他引:2  
为了研究DKDP晶体在惯性约束核聚变(ICF)装置应用中的多波长激光诱导损伤特性,建立了1064 nm激光和355 nm激光同时辐照DKDP晶体的损伤测试装置,分析了不同激光能量密度组合下的损伤针点形貌、密度、尺寸和损伤概率。结果表明,当355 nm激光以R-on-1方式辐照样品,并加入不同能量密度的1064 nm激光时,随着1064 nm激光能量密度的升高,测试样品的抗激光损伤性能得到改善,损伤针点形貌逐渐与1064 nm激光单独作用时的损伤形貌类似,损伤针点密度减小,损伤针点尺寸增大,整体上表现出耦合预处理效应。  相似文献   

3.
适用于水导激光加工工艺的毛细带锥角喷嘴,其内部流动状态复杂。为了获得喷嘴内部高度稳定水束,采用有限元流体计算软件模拟分析的方法,进行了适用于水导激光工艺的缩流型喷嘴内流场模拟分析和数值验证,取得了生成高速稳定水束的参量数据。结果表明,随着平面喷嘴入口压力逐渐增加,毛细段长径比值减小,流体进入喷嘴内部与毛细段壁面发生完全分离,无明显的空化现象发生,形成稳定光滑的缩流型水束;喷嘴入口压力为50MPa时,毛细管直径分别为0.128mm,0.07mm,0.03mm的喷嘴内部水束再附壁长度可达毛细管长度90%;锥角管为10°时, 经过锥角段的水束会再次附壁。模拟分析所得参量对水导激光缩流型喷嘴选取提供指导。  相似文献   

4.
高效率高功率全固态紫外激光器   总被引:8,自引:2,他引:8  
报道了采用大功率国产光纤束模块端面抽运Nd∶YVO4激光晶体的腔外三倍频紫外激光器,用声光调Q技术实现了高功率高光束质量基频光输出。采用LBOⅠ类相位匹配和LBOⅡ类相位匹配的腔外倍频方法,并利用凹面反射镜的方式进行聚焦,避免了1064nm和532nm激光聚焦时由于波长的不同而产生的色差效应,有效地提高了三倍频的倍频效率。最终在注入抽运光功率为23.3W,声光调Q激光器的调制频率为20kHz的工作条件下,基频光输出功率为7.28W时,得到紫外激光输出功率为1.86W,1064nm基频光到355nm紫外激光的光-光转换效率为25.5%,此外,对紫外激光光束质量的测试表明,该紫外激光器具有高功率输出的同时仍有很好的光束质量。  相似文献   

5.
报道了一台激光二极管(LD)侧面抽运的高功率连续1338 nm Nd:YAG激光器.通过分析Nd:YAG的跃迁谱线和相应的受激发射截面的特点,根据多跃迁谱线激光材料波长选择的耦合率条件,合理设计激光棒和腔镜的耦合率参数.激光谱线测量表明,成功抑制了1064 nm和1319 nm波长激光的振荡.以高功率808 nm激光二极管侧面抽运模块为抽运源,采用平-平腔结构,研究了耦合输出率分别为5.3%,7.4%和11%的输出镜的输出情况,比较分析了不同腔长对激光输出的影响.在抽运功率为555 W时,采用5.3%的耦合输出镜和20 cm腔长,获得大于100 W的1338 nm单一波长激光输出,光-光转换效率大于18%,斜率效率为35%,输出光束的M2因子为36.  相似文献   

6.
报道了一台激光二极管(LD)侧面抽运的高功率连续1338 nm Nd∶YAG激光器.通过分析Nd∶YAG的跃迁谱线和相应的受激发射截面的特点,根据多跃迁谱线激光材料波长选择的耦合率条件,合理设计激光棒和腔镜的耦合率参数.激光谱线测量表明,成功抑制了1064 nm和1319 nm波长激光的振荡.以高功率808 nm激光二极管侧面抽运模块为抽运源,采用平-平腔结构,研究了耦合输出率分别为5.3%,7.4%和11%的输出镜的输出情况,比较分析了不同腔长对激光输出的影响.在抽运功率为555 W时,采用5.3%的耦合输出镜和20 cm腔长,获得大于100 W的1338 nm单一波长激光输出,光-光转换效率大于18%,斜率效率为35%,输出光束的M2因子为36.  相似文献   

7.
采用大功率激光二极管模块光纤耦合端面泵浦Nd∶YVO4晶体,声光调Q,腔外三倍频方式实现355 nm紫外激光输出。通过计算设计了高效稳定基频谐振腔,在腔外采用LBOⅠ类相位匹配和LBOⅡ类相位匹配的方式倍频与和频,并采用4 f系统对1064 nm基频光和532 nm倍频光进行聚焦,减小了球差效应对光束的影响以提高和频效率。在泵浦功率32.3 W,得到15.9 W 1064 nm连续基频激光输出,光光效率49%。在20 kHz调制频率下,得到1.45 W355 nm紫外激光输出。通过Spiricon光束质量分析仪进行测试,在大功率输出时,紫外激光光束质量因子M2x=1.6,M2y=1.56。  相似文献   

8.
报道了用BBO晶体对激光二极管泵浦Nd∶GdVO4 晶体声光调Q 1064nm激光进行四 倍频,在泵浦功率为12. 5W时,获得平均功率196mW准连续波266nm紫外激光输出, 1064nm~266nm光2光转换效率为10. 1% , 532nm~266nm转换效率为30. 1%。  相似文献   

9.
二极管泵浦Nd:GdVO4晶体紫外激光器的研究   总被引:5,自引:2,他引:3  
报道了用BBO晶体对激光二极管泵浦Nd:GdVO4晶体声光调Q1064nm激光进行四倍频,在泵浦功率为12.5W时,获得平均功率196mW准连续波266nm紫外激光输出,1064nm~266nm光一光转换效率为10.1%,532nm~266nm转换效率为30.1%。  相似文献   

10.
随着高峰值功率、高占空比的准连续半导体激光(LD)技术的进步,促进高平均功率准连续全固态激光的快速发展。采用高效抽运耦合技术、高效冷却技术、大基模体积谐振腔设计、多级串接热补偿技术以及最佳输出耦合优化等,实现了准连续1064 nm激光输出,输出功率达1906 W,光-光效率为5  相似文献   

11.
水导激光加工技术具有热效应小、精度高、无刀具损坏等优点,被应用到高精度元件的加工中。为减小激光聚焦光斑直径以利于激光与水射流的精确耦合、提高激光孔的质量,提出了基于双缝干涉原理以减小激光聚焦光斑直径的方法。构建了传统水导激光和双缝干涉水导激光打孔的几何模型和数学模型;基于COMSOL分别进行仿真,对比和分析了在激光束参数、加工条件均相同的条件下,传统水导激光和双缝干涉水导激光打孔时对激光孔轮廓的演化、热影响区域分布和重铸层大小的影响。结果表明:与传统水导激光相比,采用双缝干涉水导激光加工技术能有效地减小激光孔直径、锥角、热影响区域宽度和重铸层大小,在现有条件下进一步减小激光聚焦光斑直径。  相似文献   

12.
160 W激光二极管抽运电光调Q主振荡功率放大器绿光激光器   总被引:1,自引:1,他引:0  
介绍了激光二极管抽运的高重复频率、大能量绿光固体激光器研制成果。激光器采用电一光调Q,主振荡功率放大器(MOPA)结构。根据放大器的设计要求,研制了抽运功率达12kW,占空比为15%的激光二极管侧抽运Nd:YAG棒状激光模块。在重复频率500Hz,脉冲宽度15ns条件下,实现了单脉冲能量1.27J的1064nm输出,光束质量β小于2.5。采用Ⅱ类相位匹配KTP晶体外腔倍频,在基频能量1J,重复频率400Hz,抽运功率密度67MW/cm^2时,获得大于405mJ的绿光输出(平均功率达160W),倍频效率约为40%,绿光光束质量β〈5。  相似文献   

13.
李炳阳  于永吉  王子健  王宇恒  姚晓岱  赵锐  金光勇 《红外与激光工程》2022,51(9):20210898-1-20210898-6
提出了一种基于1064 nm掺镱光纤激光器泵浦MgO:PPLN的3.83 μm中红外光学参量振荡器。基于单谐振光学参量振荡器的阈值理论和线宽压窄前后的光束能量集中性理论,分析了不同泵浦光束聚焦深度下,谐振腔内光束分布情况以及线宽调制前后能量的不同集中程度对阈值和光-光转换效率所产生的影响。通过采用单个光纤布拉格光栅的方式压窄了泵浦光线宽,对比分析了在不同占空比下,泵浦光线宽压窄前后对中红外光学参量振荡器输出特性的影响。当泵浦功率为18 W,脉冲激光占空比为0.2%,脉宽为100 ns,泵浦光线宽为2.5 nm时,MgO:PPLN中红外光学参量振荡器获得功率为1.42 W的3.83 μm激光输出,光-光转换效率为7.9%。将线宽压窄到0.1 nm后,脉宽为2 ns,MgO:PPLN中红外光学参量振荡器获得最高功率为1.98 W的3.83 μm激光输出,光-光转换效率为11%,光束质量M2=1.89;同时相比于线宽压窄前激光输出效率提高了39.2%。  相似文献   

14.
近红外高斯激光束在强激光与材料相互作用、激光清洗、激光燃烧诊断等热点研究领域中发挥着重要的作用。然而,高斯光束能量分布的不均匀性阻碍了这些领域的深入发展。为提高工作效率和测量精度,实际应用中往往期望光束能量在较大工作距离内呈均匀分布,但现有光束整形方法无法同时满足长焦深和高激光耐受功率要求。为此,本文基于非球面像差效应提出并设计了一种新型长焦深高斯激光束均匀化光学系统,系统由非球面光束均匀化系统和球面长焦准直系统两部分组成,所有透镜均采用熔融石英并在其表面镀有增透膜,能够实现99.9%的光学系统传输效率。系统工作波段为1064 nm,工作距离为1000 mm,系统总长为135.2 mm,耐受激光功率不小于300 W。设计结果表明:整形后的平顶高斯光束有效焦深为±100 mm,光束均匀性≥95%,会聚角为17.52 mrad,能够满足上述应用场景的实际需求。本文设计的光束整形系统相比于其他激光光束均匀化系统,具有结构简单、易于加工、成本低、焦深长、耐受激光功率高、光束均匀化效果好的特点。  相似文献   

15.
查榕威  雷广智  李建林  陈浩伟  白杨 《红外与激光工程》2019,48(10):1005013-1005013(7)
激光射孔是油井完井工程领域一项具有前瞻性的技术,对提高石油资源采收率具有重要的应用价值。为提高油井激光射孔所使用的激光功率和激光传输的安全性,利用19台光纤传输972 nm半导体激光器实现了10 kW级激光空间非相干合束。通过分析参与合束的准直激光束的半径、间距与合束激光的光斑重叠率之间的变化规律以及模拟合束激光横截面能量分布,完成激光空间非相干合束器的结构设计。在300 mm的合束长度内实现了具有单一光束形态且最大合束功率达到10.441 kW、焦斑直径21 mm、线宽2.46 nm的空间非相干合束激光输出,合束效率达到98.2%。利用10 kW空间非相干合束激光完成了针对砂岩和钢板的地面激光射孔实验,射孔深度分别达到570 mm和70 mm。  相似文献   

16.
V2O5薄膜在连续激光防护中的应用研究   总被引:1,自引:0,他引:1  
骆永全  王伟平  罗飞 《应用激光》2005,25(6):381-383
用磁控离子溅射法在玻片上沉积了V2O5薄膜,并进行了X射线衍射和常温下光谱透过率测量。分别用1064nm和1319nm连续激光辐照样品,实时测量了V2O5薄膜的温度变化,以及由于温度变化引起相变后对激光透过率的变化。结果表明:在平均入射功率为8.1W、光斑直径2mm时,V2O5薄膜对1064nm激光的透过率由相变前的55%变为相变后的25.5%,响应时间约24ms;在平均入射功率为8.9W、光斑直径2mm时,其对1319nm激光的透过率由相变前的63%变为相变后的27.9%,响应时间约40ms。对实验结果进行了分析并介绍了V2O5薄膜的相变原理及其在激光防护上的应用。  相似文献   

17.
为了获得高功率、高光束质量的1064nm激光,采用凹透镜作为补偿透镜来补偿激光棒的热透镜效应。对补偿透镜的选取进行理论分析,并使用所设计的包含补偿透镜的平平谐振腔Nd:YAG激光器进行了实验验证。在实验中,使用焦距为250mm的凹透镜、透过率为30%的输出耦合镜,获得了55W的高功率、高光束质量的1064nm激光输出。结果表明,此项研究对高功率、高光束质量激光器谐振腔的设计是有帮助的。  相似文献   

18.
光纤传能特性研究   总被引:1,自引:0,他引:1  
为了获得光纤传输高功率脉冲激光的主要特性,对光纤传能进行了理论分析和实验研究.结论是:光纤宏观弯曲对传输效率有比较明显的影响:光纤的芯径、数值孔径(NA)、长度等指标对高功率激光传输效率有很大影响;当传输激光功率大于某个闽值后,光纤内产生的受激拉曼散射(SRS)和受激布里渊散射(SBS)影响激光能量输出;光纤的端面质量限制了传输激光功率的提高,根据ISO11254(光学元件表面激光诱导损伤的光学测试方法)得出光纤的激光零损伤概率阈值可以达到58.6J/cm2;光纤输出光束截面能量分布被匀化.  相似文献   

19.
朱孟真  刘云  米朝伟  魏靖松  陈霞  田方涛  冯苏茂  王赛 《红外与激光工程》2022,51(7):20210537-1-20210537-7
激光是对抗光电侦察的有效方式。为了提高损伤效能,探索了复合激光损伤光电探测器的新思路。分别开展了波长1064 nm和532 nm、脉宽10 ns的激光及其双波长复合激光,以及波长1064 nm、脉宽0.4 ms和10 ns激光及其双脉宽复合激光对CMOS图像传感器的损伤效能实验。结果表明,双波长复合激光对CMOS造成严重损伤时的基频光能量是单独1064 nm激光的77.8%,是单独532 nm激光的62.5%;双脉宽复合激光损伤时,脉宽0.4 ms激光的能量密度降低为单独作用时的1.7%,脉宽10 ns激光的能量密度降低为单独作用时的76.4%。这一发现为多制式复合激光高效光电对抗提供了新的思路和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号