首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
为增强黏性土的抗裂和抗冲刷性能,对掺加不同含量砂土的黄原胶复合黏性土开展了一系列室内蒸发、干缩开裂和抗冲刷试验,通过测算试样含水率和土体抗冲刷系数,结合图形分析软件定量分析了土体表层裂隙的发育情况,以研究复合黏性土体内部水分变化规律及其抗裂和抗冲刷性能。结果表明:随着黏性土中砂土颗粒的掺入,试样的裂隙率、裂隙宽度和受冲刷破坏程度呈现先增大后减小的趋势;当含砂量为30%时,素土及黄原胶复合试样的裂隙率、裂隙宽度和受冲刷破坏程度均为各含砂量下的最大值;当含砂量为50%左右时,对于黄原胶复合黏性土,黄原胶胶体与砂土颗粒形成具有一定强度的稳定结构,其抗冲刷性能得到显著提高。  相似文献   

2.
影响边坡变形破坏的因素复杂多样,但重力是最根本原因。地下水是失稳的关键性因素,在边坡破坏过程中起多重作用。采用三轴试验对不同含水率的红黏土物理力学参数的影响进行研究,并利用理正5.6和GeoStudio 2007对某土质边坡进行不同水位下的稳定性计算。研究表明,含水率的增加会降低土体的黏聚力和内摩擦角,从而导致边坡稳定性下降。地下水位的高低也会对边坡稳定性产生不同程度的影响。在边坡支护设计时,要查明地下水的情况,做好边坡的截水和排水设计,减小地下水对边坡的不利影响,研究结果可为边坡支护提供参考。  相似文献   

3.
库岸边坡渗流及稳定性分析   总被引:19,自引:1,他引:18  
张文杰  陈云敏  凌道盛 《水利学报》2005,36(12):1510-1516
库岸边坡常因受到库水位周期性波动的作用而失稳。传统的饱和土渗流及稳定分析方法无法正确描述水位升降过程中岸坡内孔压场的动态变化及其对岸坡安全系数的影响规律。本文从非饱和土的渗流和抗剪强度理论出发,分析了水位升降时土质岸坡的渗流规律及其稳定性的变化规律。通过选取典型的土性参数,对黏土、粉土和均质砂岸坡进行饱和-非饱和渗流分析,得到水位升降过程中岸坡内孔隙水压力场,再引入极限平衡方法,考虑基质吸力对非饱和土抗剪强度及岸坡安全系数的贡献,进行岸坡稳定性分析。分析表明,土体的饱和渗透系数和土水特征曲线共同决定了水位升降时岸坡内孔隙水压力的大小及分布,水位升降情况下岸坡安全系数的变化规律也与岸坡土体的渗透特性有关。  相似文献   

4.
为建立土质边坡失稳的微观机理和宏观位移之间的关系,应用有限元强度折减法,分析了失稳过程中土质边坡土体单元应力状态和整体稳定性的联系,定义了边坡渐进破坏时潜在滑动面上土体单元的应力差;分别采用塑性应变区贯通、特征点位移突变、应力差等不同失稳判据对均质土坡的稳定性进行判断分析,验证了不同边坡失稳判据间的一致性与统一性。通过单因素敏感性分析方法,分析了边坡几何参数(坡高、坡比)与物理力学参数(弹性模量、重度、黏聚力、内摩擦角和泊松比等)对极限状态下边坡坡顶水平位移的影响;结合归一化变量的变异系数法,构建了以变形量为基础,同时考虑几何因素与物理因素的土质边坡归一化失稳判据,提出了边坡稳定性的评价方法。  相似文献   

5.
本文以长期浸泡作用下砂性土-黏性土二元混合堤防为研究对象,利用有限元法对高水位不同降速条件下堤防渗流和抗滑稳定性进行数值模拟研究。研究表明水位下降速度对堤防边坡渗流稳定性和抗滑稳定性影响较大;同时水位骤降过程中,堤防迎水侧砂性土和黏性土接触面可能会发生流砂和接触冲刷破坏。本文研究这种二元结构混合堤防在水位下降过程中可能发生的工程渗透破坏问题,为今后的水利工程建设提供一定的参考。  相似文献   

6.
河流冲刷作用下堤岸稳定性研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
分析河流冲刷作用下堤岸土体起动时的受力特点和冲刷破坏机理,概括国内外近岸水流冲刷力的分布与计算、堤岸土体抗冲力确定、河岸土体横向冲刷计算方法等研究成果,分析和评价河流冲刷作用下堤岸边坡稳定性研究进展。指出进一步研究的问题和研究方法:必须将堤岸边坡稳定分析与河流冲刷作用同时考虑,建立包含河流冲刷力的堤岸稳定分析力学模型;开展堤岸稳定分析的三维数值模拟;利用有限元法预测堤岸边坡破坏发展过程,分析变形与稳定的内在联系;将水上岸坡、水下岸坡以及坡脚和河床作为一个整体,进行堤防稳定的渗流场与应力场耦合分析。  相似文献   

7.
桥位区水沙环境的变化产生局部冲刷问题,并形成冲刷坑。已有研究成果表明,当冲刷坑发展到一定程度时,将产生水下边坡抗滑稳定问题,出现边坡滑动破坏与坍塌破坏交替发生,使冲刷坑逼近桥墩基础,导致基础产生不均匀沉降,甚至出现整体稳定问题。根据冲刷坑形状和空间分布动态变化的实测数据,得到不同河床底质层的冲刷稳定坡角,并研究了坡底高程和坡度对水下边坡稳定性的影响。通过边坡稳定安全系数的数学回归分析,建立冲刷坡失稳预警的HGK模型,进而开展了桥位区冲刷范围计算,并根据实测数据检验了计算成果。  相似文献   

8.
基于室内模型试验模拟水位降落过程中边坡渗流场变化,得到不同坡形、降落速度、土体材料和降落差对边坡渗流场及稳定的影响。研究表明,边坡水位下降初期,边坡内外孔隙水压力差值随着边坡水位的下降逐渐增大;边坡水位下降后期,边坡前缘水位趋于稳定,边坡内外孔隙水压力差值逐渐减小,边坡渗流场接近稳定状态。渗透性能好的土体,当边坡前缘水位处于稳定状态后,边坡内部孔隙水压力衰减速度较渗透性差的土体快,水位下降对边坡稳定性的不利影响更显著、时间也更久。水位降落速率、落差和坡形均对边坡有显著影响,随着水位降落速率增大、落差增大和坡比增大,边坡更易失稳发生破坏。  相似文献   

9.
为探究降雨条件下边坡坡度与坡体材料对临水岸坡失稳的影响,考虑不同边坡坡度和坡体材料2个变量,开展5组降雨条件下临水岸坡失稳模型试验,观察不同时刻岸坡变形特点并采用孔隙水压力计和土压力计监测坡体不同位置的孔隙水压力和土压力变化。试验结果表明:降雨对坡体表层结构稳定性影响显著,表层结构在降雨作用下迅速饱和,抗剪强度大幅降低,稳定性劣化,而内部结构因为水体较难渗入,影响较小;边坡坡度对边坡稳定影响较大,坡度越大降雨下渗越深入,下滑力增大,向下渗透力更强,对边坡稳定不利,即影响性坡度60°45°30°;坡体材料直接影响边坡稳定,不同材料的坡体渗透性能不同,当坡体含砂率为40%时渗透性能最好,坡体在5 min产生破坏且孔隙水压力响应较快,其发生失稳的概率更高;而坡体为纯黏土时渗透性最差,未产生明显破坏且坡内孔隙水压力响应较慢,降雨对边坡稳定性的影响有限。  相似文献   

10.
董艳华  程壮  党莉  宛良朋 《人民长江》2012,43(13):84-87
为研究水对膨胀岩边坡失稳的影响,以南水北调中线工程河南安阳第一施工标段渠坡为工程实例,利用GEO-SLOPE软件中的seep/w模块和slope/w模块,研究在蓄水条件下,不同水位升降速度及降雨对膨胀岩边坡渗流场和稳定性的影响。结果表明:水位变化速度对膨胀岩边坡的渗流场有较大影响,较大水位上升速度对膨胀岩边坡稳定性有利,但过快的水位下降速度不利于膨胀岩边坡的稳定性,降雨会显著降低膨胀岩边坡的稳定性。  相似文献   

11.
下蜀土边坡降雨型滑坡的成因分析   总被引:2,自引:0,他引:2  
孙萍  薛涛  虞玉诚 《水利水电技术》2016,47(12):117-120
在分析降雨型滑坡破坏模式以及下蜀土边坡稳定性影响因素的基础上,对南京典型剖面下蜀土物理力学性质进行分析,总结了下蜀土滑坡的主要成因。研究结果表明,随着降雨过程中包气带水分运移,下蜀土非饱和土体边坡内孔隙水压力和岩土界面基质吸力的分布不断发生变化,土体抗剪强度也随之不断变化,受其影响,边坡极易发生降雨型滑坡。  相似文献   

12.
为了研究水位变化对库岸边坡稳定性影响,采用模型实验方法研究坡比、坡前水位降速等因素对边坡的渗流场及稳定性的影响规律,对比分析试验。结果表明,坡体内由坡内指向坡外的渗流,是引起边坡失稳破坏的主要因素。且渗流力随着坡前水位降速、坡度的增大而增大,不利于坡内孔隙水压力的消散,使得坡内外水位滞后现象明显,从坡内浸润线的变化趋势中可以得到验证。由此获得在不同水位降速下,不同坡比边坡的失稳破坏机理,对边坡工程稳定性分析具有一定的参考价值。  相似文献   

13.
河岸边坡的整体稳定性计算,无法定量反映水位变化对边坡各部位局部稳定性的影响。基于点稳定系数法与非饱和土力学理论,运用非饱和流固耦合模型进行河岸边坡的稳定性数值分析。以某大型模型试验为例,通过绘制边坡在水位升降作用下各时段所对应的点稳定系数分布云图,揭示边坡的破坏原因与内部稳定性变化过程,并与实际观测结果进行对比。研究表明:点稳定系数法能合理地描述河岸边坡各位置的稳定性及其动态变化,与实际吻合良好;边坡临空面稳定性较低,水位缓慢上升将导致有效应力降低及非饱和区基质吸力丧失,易诱发浅层失稳;水位下降形成的动水压力,是导致边坡稳定性下降的主因,坡脚处最易失稳,致使边坡发生牵引破坏;边坡内部点稳定系数随水力梯度的增大而降低,非稳定区分布面积随水力梯度的增大而增大,并主要分布于浸润线以下、坡脚以上。研究成果为此类边坡的稳定性评价及治理提供了一定的科学依据。  相似文献   

14.
西北黄土地区库岸边坡破坏有滑坡和崩塌两种基本形式。为进一步研究水位变化时折线型边 坡破坏的形式和坡型对黄土岸坡稳定性的影响,通过不同坡角的折线型黄土均质岸坡模型试验,观察并 分析相同的水位升降条件下不同坡型岸坡的失稳破坏现象。试验结果表明:在相同的水位升降作用条 件下,上陡下缓型岸坡,坡面破坏形态以淘蚀为主;上缓下陡型岸坡,坡面破坏从坡面转折处开始,以崩 塌为主。  相似文献   

15.
河槽边坡的侵蚀和稳定性关乎航运和防汛安全。利用多模态传感器系统对长江马鞍山段河漫滩边坡的沉积、地貌和水动力特征进行水陆联合测量和高精度一体化三维地形数据的融合研究,并基于BSTEM模型进行横断面安全系数计算,对边坡稳定性进行评估。结果表明:该边坡上层为黏性土,下层为非黏性砂;横断面陆上坡度约0.09,水下坡度0.22~0.88,安全系数为1.18~1.72,并随退水期水位的下降而减小;该河段主流左摆,边坡在高速水流的淘刷作用下不断侧切并形成冲刷坑,导致了近岸地形的不连续性,局部边坡存在失稳风险,建议加强退水期边坡的监控和失稳预防。  相似文献   

16.
基于PFC2D颗粒流方法,建立覆盖层边坡模型,设定多个库水位的条件下,模拟覆盖层边坡破坏过程,预测形成的堰塞坝高度。结果表明,库水位越高,堰塞坝高度越高。当覆盖层中饱和土体占1/3时,破坏规模较大,形成的堰塞坝高度要高于其他水位条件下的模拟结果,即存在一个较危险的水位区域。水位低于危险区时,主要发生坡脚塌岸;危险水位区域内,整体下滑;水位高于危险水位区,主要是饱和土体发生失稳。该方法不适用于库水位升降的动态过程模拟,仅适用于静水位模拟。  相似文献   

17.
《人民黄河》2013,(11):76-78
降雨是影响边坡稳定性的重要因素,雨水入渗使土体饱和度增大、含水量增加、抗剪强度下降,当降雨强度和持续时间超过临界值时,便导致边坡失稳。结合兰州某滑坡治理工程,根据降雨强度和持续时间计算边坡浅层土体在不同时刻的含水量,运用非饱和土抗剪强度理论,对降雨条件下的黄土边坡的稳定性进行了分析。结果表明:持续降雨条件下边坡的变形破坏主要是边坡土体含水量增加引起的;把含水量作为抗剪强度的主要控制指标,建立边坡土体的黏聚力和内摩擦角与降雨持续时间的关系,进行有限元模拟分析,得到边坡安全系数,可为持续降雨条件下黄土边坡的防护和失稳预测提供参考;传统的有限元强度折减法得到的安全系数不能准确反映边坡稳定性的强弱,只能说明边坡是否破坏。  相似文献   

18.
库区修建高速公路有时因为地形条件等原因会无法避免把高速公路建在临湖地段,这就使得临湖路堤边坡会受到复杂水文条件的影响。水位的涨落会对边坡的稳定性产生重要的作用,很多临湖滑坡是发生在水位升降期间的,因此对此进行研究非常有必要。利用有限元软件迈达斯进行临湖区路堤边坡的模拟研究。结果表明,边坡水位的升降对边坡稳定性具有重要的作用。当水位上升时,动水压力的作用使安全系数增加;当水位稳定、土体接近饱和时,动水压力消失,边坡安全系数降低,最终由于基质吸力的消失而变得更加不稳定;当水位下降时,情况基本与上升时相反,安全系数先降低后升高,最终比水位下降前更高。只是在同样的水位升降下,边坡土体的排水时间比进水时间更长。水位上升和下降的速度也有一定的影响,变化更快导致动水压力更大,对边坡稳定性会更有利或不利;对于库岸区边坡,影响边坡稳定性因素主要是边坡的水位,坡面的降雨由于产生的动水压力较小,所以对边坡的作用是削弱了边坡的稳定性。这一点无论水位上升还是下降的情况下都是一样的。  相似文献   

19.
在地质背景复杂的西北地区进行路堑开挖的工程中遇到了大量以上部为黄土层、下部为砂岩层的典型二元结构路堑高边坡。为确定黄土-砂岩二元结构路堑高边坡的失稳变形机制,依托兰永线高速公路K35+092段工程,利用有限元分析软件GEO-studio建立了黄土-砂岩二元结构路堑高边坡开挖全过程的数值模型。通过对边坡在分步开挖卸荷过程中的坡顶水平位移、竖向位移、深层水平位移、边坡稳定性安全系数变化,以及边坡在开挖状态下应变模拟结果的分析,对黄土-砂岩二元结构路堑高边坡的破坏特征以及失稳破坏机制进行了较为系统的研究。研究结果表明:黄土-砂岩二元结构路堑高边坡的结构特点、地层岩性决定了其失稳变形机制,在开挖卸荷过程中,坡顶水平位移不断增大,土体内塑性应变累积,边坡稳定性逐渐降低;黄土-砂岩二元结构路堑高边坡中的软弱夹层充当“滑动垫层”,起到“润滑”以及“弱化边界”的作用,是边坡潜在的不稳定因素之一;随着路堑边坡的刷方卸荷,上覆黄土坡体发生滑移破坏并对下伏砂岩坡体产生巨大的冲击力,而下伏坡体顺层剪出破坏产生的“联动作用”再次引发上覆坡体的滑塌下错,致使边坡整体失稳。为避免类似黄土-砂岩二元结构路堑高边坡失稳滑塌的发生,可采用框架预应力锚杆支护结构对边坡进行加固。  相似文献   

20.
影响边坡稳定性既有水流动力、河床边界条件等自然因素,也有河床采砂、岸边建筑施工等人为因素。其中,水流动力是影响崩岸的主导因素。构建边坡稳定性分析模型,对地下水位、临河水位等因素对边坡稳定性的影响展开研究。结果表明,地下水位~临河水位差越大,水流冲刷作用越显著,边坡稳定性就越低;提高临河水位有助于抑制崩塌土体,维持边坡稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号