首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micronutrient malnutrition, and particularly deficiency in zinc (Zn) and iron (Fe), afflicts over three billion people worldwide, and nearly half of the world’s cereal-growing area is affected by soil Zn deficiency. Wild emmer wheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell.], the progenitor of domesticated durum wheat and bread wheat, offers a valuable source of economically important genetic diversity including grain mineral concentrations. Twenty two wild emmer wheat accessions, representing a wide range of drought resistance capacity, as well as two durum wheat cultivars were examined under two contrasting irrigation regimes (well-watered control and water-limited), for grain yield, total biomass production and grain Zn, Fe and protein concentrations. The wild emmer accessions exhibited high genetic diversity for yield and grain Zn, Fe and protein concentrations under both irrigation regimes, with a considerable potential for improvement of the cultivated wheat. Grain Zn, Fe and protein concentrations were positively correlated with one another. Although irrigation regime significantly affected ranking of genotypes, a few wild emmer accessions were identified for their advantage over durum wheat, having consistently higher grain Zn (e.g., 125 mg kg?1), Fe (85 mg kg?1) and protein (250 g kg?1) concentrations and high yield capacity. Plants grown from seeds originated from both irrigation regimes were also examined for Zn efficiency (Zn deficiency tolerance) on a Zn-deficient calcareous soil. Zinc efficiency, expressed as the ratio of shoot dry matter production under Zn deficiency to Zn fertilization, showed large genetic variation among the genotypes tested. The source of seeds from maternal plants grown under both irrigation regimes had very little effect on Zn efficiency. Several wild emmer accessions revealed combination of high Zn efficiency and drought stress resistance. The results indicate high genetic potential of wild emmer wheat to improve grain Zn, Fe and protein concentrations, Zn deficiency tolerance and drought resistance in cultivated wheat.  相似文献   

2.
Summary Greenhouse and laboratory studies were conducted to study the effect of zinc sources and methods of application on correcting zinc deficiency in flooded rice grown on Vertisol from Ngala, northern Nigeria, using the variety IR-20.Plant dry matter yield was similar for ZnSO4, ZnEDTA, metallic Zn and fritted Zn with mixed soil application. Zinc uptake was affected in the following order; ZnSO4 > ZnEDTA > metallic Zn > fritted Zn. Comparable dry matter yield and zinc uptake were obtained with mixing, surface broadcasting and banding of ZnEDTA. Mixing the fritted Zn gave higher dry matter yield and zinc uptake than broadcasting or banding.Seed soaking with a suspension of fritted Zn resulted in higher dry matter yield and zinc uptake than with ZnEDTA solution. Seed soaking for 24 hours with fritted Zn suspension at a concentration of about 0.5 per cent Zn appeared to be a suitable method for applying zinc with direct seeded rice.  相似文献   

3.
To study variation in zinc efficiency (ZE) among current Chinese rice genotypes, a pot experiment was conducted with 15 aerobic and 8 lowland rice genotypes. Aerobic rice is currently bred by crossing lowland with upland rice genotypes, for growth in an aerobic cultivation system, which is saving water and producing high yields. A Zn deficient clay soil was used in our screening. Zn deficiency resulted in a marked decrease in shoot dry matter production of most genotypes after 28 days of growth. Genotypes were ranked according to their tolerance to Zn deficiency based on ZE, expressed as the ratio of shoot dry weight at Zn deficiency over that at adequate Zn supply. Substantial genotypic variation in ZE (50–98%) was found among both lowland and aerobic genotypes. ZE correlated significantly (P < 0.05) with Zn uptake (R 2 = 0.34), Zn translocation from root to shoot (R 2 = 0.19) and shoot Zn concentration (R 2 = 0.27). The correlation with seed Zn content was insignificant. In stepwise multiple regression analyses, variation in Zn uptake and Zn translocation explained 53% of variation in ZE. Variation in Zn uptake could be explained only for 32% by root surface area. These results indicate that Zn uptake may be an important determinant of ZE and that mechanisms other than root surface area are of major importance in determining Zn uptake by rice.  相似文献   

4.
Manguiat  I.J.  Singleton  P.W.  Rocamora  P.M.  Calo  M.U.  Taleon  E.E. 《Plant and Soil》1997,192(2):321-331
Two field experiments on green manuring were conducted under upland acidic soil (pH = 4.35) conditions with the following objectives: (1) to determine the influence of inoculation site, P fertilization, and liming on the biomass production, N content, N accumulation, and N availability of S. rostrata grown in an acidic soil, (2) to compare the effectiveness of S. rostrata, P. calcaratus and urea as N sources for upland rice as affected by liming and N source-sowing time combination, and (3) to assess the effect of liming and N source-sowing time combination on % Ndff (N derived from the fertilizer), % Ndfs (N derived from soil), % FNU (fertilizer N utilization), and FNY or fertilizer N yield (kg N ha–1) of upland rice grown in acidic soil. At 2 weeks after incorporating S. rostrata (95 days after lime application), liming significantly increased N availability by more than 2-fold suggesting that the decomposition of S. rostrata by soil microflora was stimulated by lime. Liming, phosphorus application, and inoculation site improved significantly the dry biomass production, N content and N accumulation of S. rostrata; thus, enhancing its green manuring potential. Regardless of liming, S. rostrata whether applied at 0 week or 2 weeks before sowing was superior to urea in improving grain and straw yields. P. calcaratus when applied at 2 weeks before sowing also produced higher grain yield than urea. Immediate sowing of upland rice after green manure incorporation did not affect negatively the growth and development of upland rice; hence, farmers could save at least 2 weeks in their cropping calendar. N source-sowing time combination had a highly significant influence on % Ndff, % Ndfs, % FNU, N uptake, and fertilizer N yield of upland rice. However, only N uptake was influenced significantly by liming. The rice plant obtained significantly higher % Ndfs from the soils treated with green manure than those treated with urea regardless of liming. The % FNU and % Ndff from the green manures were 11-37% and 9-25%, respectively. These values are much lower than those obtained under continuously flooded soil conditions possibly because of the differences in the organic matter decomposer populations and N loss mechanisms between sloping upland conditions and continuously flooded conditions.  相似文献   

5.
Zinc nutrition in rice production systems: a review   总被引:1,自引:0,他引:1  

Background

Zinc (Zn) deficiency is one of the important abiotic factors limiting rice productivity worldwide and also a widespread nutritional disorder affecting human health. Given that rice is a staple for populations in many countries, studies of Zn dynamics and management in rice soils is of great importance.

Scope

Changing climate is forcing the growers to switch from conventional rice transplanting in flooded soils to water-saving cultivation, including aerobic rice culture and alternate wetting and drying system. As soil properties are changed with altered soil and water management, which is likely to affect Zn solubility and plant availability and should be considered before Zn management in rice. In this review, we critically appraise the role of Zn in plant biology and its dynamics in soil and rice production systems. Strategies and options to improve Zn uptake and partitioning efficiency in rice by using agronomic, breeding and biotechnological tools are also discussed.

Conclusions

Although soil application of inorganic Zn fertilizers is widely used, organic and chelated sources are better from economic and environmental perspectives. Use of other methods of Zn application (such as seed treatment, foliar application etc., in association with mycorrhizal fungi) may improve Zn-use efficiency in rice. Conventional breeding together with modern genomic and biotechnological tools may result in development of Zn-efficient rice genotypes that should be used in conjunction with judicious fertilization to optimize rice yield and grain Zn content.  相似文献   

6.
Lowlands comprise 87% of the 145 M ha of world rice area. Lowland rice-based cropping systems are characterized by soil flooding during most of the rice growing season. Rainfall distribution, availability of irrigation water and prevailing temperatures determine when rice or other crops are grown. Nitrogen is the most required nutrient in lowland rice-based cropping systems. Reducing fertilizer N use in these cropping systems, while maintaining or enhancing crop output, is desirable from both environmental and economic perspectives. This may be possible by producing N on the land through legume biological nitrogen fixation (BNF), minimizing soil N losses, and by improved recycling of N through plant residues. At the end of a flooded rice crop, organic- and NH4-N dominate in the soil, with negligible amounts of NO3. Subsequent drying of the soil favors aerobic N transformations. Organic N mineralizes to NH4, which is rapidly nitrified into NO3. As a result, NO3 accumulates in soil during the aerobic phase. Recent evidence indicates that large amounts of accumulated soil NO3 may be lost from rice lowlands upon the flooding of aerobic soil for rice production. Plant uptake during the aerobic phase can conserve soil NO3 from potential loss. Legumes grown during the aerobic phase additionally capture atmospheric N through BNF. The length of the nonflooded season, water availability, soil properties, and prevailing temperatures determine when and where legumes are, or can be, grown. The amount of N derived by legumes through BNF depends on the interaction of microbial, plant, and environmental determinants. Suitable legumes for lowland rice soils are those that can deplete soil NO3 while deriving large amounts of N through BNF. Reducing soil N supply to the legume by suitable soil and crop management can increase BNF. Much of the N in legume biomass might be removed from the land in an economic crop produce. As biomass is removed, the likelihood of obtaining a positive soil N balance diminishes. Nonetheless, use of legumes rather than non-legumes is likely to contribute higher quantities of N to a subsequent rice crop. A whole-system approach to N management will be necessary to capture and effectively use soil and atmospheric sources of N in the lowland rice ecosystem.IRRI-NifTAL-IFDC joint contribution.  相似文献   

7.
8.
Abiotic stresses are among the major limiting factors for plant growth and crop productivity. Among these, salinity is one of the major risk factors for plant growth and development in arid to semi-arid regions. Cultivation of salt tolerant crop genotypes is one of the imperative approaches to meet the food demand for increasing population. The current experiment was carried out to access the performance of different rice genotypes under salinity stress and Zinc (Zn) sources. Four rice genotypes were grown in a pot experiment and were exposed to salinity stress (7 dS m−1), and Zn (15 mg kg−1 soil) was applied from two sources, ZnSO4 and Zn-EDTA. A control of both salinity and Zn was kept for comparison. Results showed that based on the biomass accumulation and K+/Na+ ratio, KSK-133 and BAS-198 emerged as salt tolerant and salt sensitive, respectively. Similarly, based on the Zn concentration, BAS-2000 was reported as Zn-in-efficient while IR-6 was a Zn-efficient genotype. Our results also revealed that plant growth, relative water content (RWC), physiological attributes including chlorophyll contents, ionic concentrations in straw and grains of all rice genotypes were decreased under salinity stress. However, salt tolerant and Zn-in-efficient rice genotypes showed significantly higher shoot K+ and Zn concentrations under saline conditions. Zinc application significantly alleviates the harmful effects of salinity by improving morpho-physiological attributes and enhancing antioxidant enzyme activities, and the uptake of K and Zn. The beneficial effect of Zn was more pronounced in salt-tolerant and Zn in-efficient rice genotypes as compared with salt-sensitive and Zn-efficient genotypes. In sum, our results confirmed that Zn application increased overall plant’s performance under saline conditions, particularly in Zn in-efficient and tolerant genotypes as compared with salt-sensitive and Zn efficient rice genotypes.  相似文献   

9.
Zinc (Zn) is an essential nutrient for plants with a major role in healthy root growth. Zinc is essential for maintaining root membrane integrity, but the effective Zn concentration required may depend on the crop genotype. Zinc-efficient and inefficient wheat cultivars (Triticuum aestivum cv. Excalibur and Gatcher, respectively) were grown in deep soil cores in calcareous subsoil with low micronutrient levels, and high pH and boron. Plants were grown in soil with or without basal nutrients (excluding Zn) and with or without addition of Zn. Components of yield and nutrient use efficiency were measured. Although Gatcher produced 47% more dry weight of tops and double the root length density of Excalibur at maturity, Excalibur was much more efficient in terms of Zn uptake by roots and seven-fold more efficient than Gatcher in partitioning Zn to grain production.  相似文献   

10.
A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.  相似文献   

11.
Summary On several alkaline calcareous soils, Zn and Cu deficiency occurred mainly in lowland rice (Oryza sativa L.) and was rarely found in wheat (Triticum aestivum L.). Zinc and Cu requirement of plants was not responsible as the critical Zn and Cu contents in tops of the two plant species were almost similar i.e. 17.4, 6.5 and 14.5, 5.6 ppm respectively. Neither did rice absorb Zn and Cu less efficiently. On the contrary, their rates of absorption in rice were double than in wheat. They were 22.2, 6.3 and 10.2, 3.3 ng atoms/g fresh root/h respectively in the two plant species. Flooded soil conditions appeared to be responsible for Zn and Cu deficiency in rice as their deficiency was found mainly in plant samples collected from continuously flooded fields. The mechanism is not known.Both Zn and Cu inhibited uptake of each other in wheat on most of the soils. In rice, only applied Zn depressed Cu uptake but Cu had generally little effect on Zn uptake. Little Cu inhibition of Zn uptake in lowland rice seems to be related to flooded soil conditions. The mechanism is yet to be known. The antagonising element accentuated the deficiency of the other element both in wheat and rice and severely reduced their yields on soils marginal to deficient in Zn or Cu supplies. It is recommended that their soil availability status should be thoroughly considered before their fertilizers are applied. re]19750515  相似文献   

12.
Plant Zn uptake from low Zn soils can be increased by Zn-mobilizing chemical rhizosphere processes. We studied whether inoculation with arbuscular mycorrhizal fungi (AMF) can be an additional or an alternative strategy. We determined the effect of AMF inoculation on growth performance and Zn uptake by rice genotypes varying in Zn uptake when nonmycorrhizal. A pot experiment was conducted with six aerobic rice genotypes inoculated with Glomus mosseae or G. etunicatum or without AMF on a low Zn soil. Plant growth, Zn uptake and mycorrhizal responsiveness were determined. AMF-inoculated plants produced more biomass and took up more Zn than nonmycorrhizal controls. Mycorrhizal inoculation, however, significantly increased Zn uptake only in genotypes that had a low Zn uptake in the nonmycorrhizal condition. We conclude that genotypes that are less efficient in Zn uptake when nonmycorrhizal are more responsive to AMF inoculation. We provide examples from literature allowing generalization of this conclusion on a trade off between mycorrhizal responsiveness and nutrient uptake efficiency.  相似文献   

13.
Summary Application of zinc sulphate mixed with compost/poultry manure proved to be equivalent to the effect of dipping the seedling roots in 4% ZnO suspension with respect to rice yields but Zn-amended organic manures were superior to other treatments with regards to total Zn uptake. A marked residual effect of soil applied treatments was recorded on the succeeding maize crop. Application of poultry manure alone was about one and a half times more effective than compost alone in increasing the rice and maize grain yields. Poultry manure surpassed compost in increasing zinc uptake by the crops and at the same time it built up more available Zn in soil than compost for the following crop. The magnitude of yields and Zn uptake response were magnified when zinc sulphate was applied along with organic manures. Application of 25 kg zinc sulphate/ha alone had the same effect as 50 quintals poultry manure alone or 12.5 kg zinc sulphate applied with 50 quintals compost/ha with respect to crop yields. A significant positive correlation was, recorded in both the crops between Zn concentration in grain or straw and their respective yields.  相似文献   

14.
Pot and field experiments were conducted to investigate the effects of soil amendments (cow manure, rice straw, zeolite, dicalcium phosphate) on the growth and metal uptake (Cd, Zn) of maize (Zea mays) grown in Cd/Zn contaminated soil. The addition of cow manure and rice straw significantly increased the dry biomass, shoot and root length, and grain yield of maize when compared with the control. In pot study, cow manure, rice straw, and dicalcium phosphate all proved effective in reducing Cd and Zn concentrations in shoots and roots. Cd and Zn concentrations in the grains of maize grown in field study plots with cow manure and dicalcium phosphate amendments to highly contaminated soil (Cd 36.5 mg kg?1 and Zn 1520.8 mg kg?1) conformed to acceptable standards for animal feed. Additionally both cow manure and dicalcium phosphate amendments resulted in the significant decrease of Cd and Zn concentrations in shoots of maize.  相似文献   

15.
Crop performance, nitrogen and water use in flooded and aerobic rice   总被引:11,自引:0,他引:11  
Irrigated aerobic rice is a new system being developed for lowland areas with water shortage and for favorable upland areas with access to supplementary irrigation. It entails the cultivation of nutrient-responsive cultivars in nonsaturated soil with sufficient external inputs to reach yields of 70–80% of high-input flooded rice. To obtain insights into crop performance, water use, and N use of aerobic rice, a field experiment was conducted in the dry seasons of 2002 and 2003 in the Philippines. Cultivar Apo was grown under flooded and aerobic conditions at 0 and at 150 kg fertilizer N ha–1. The aerobic fields were flush irrigated when the soil water potential at 15-cm depth reached –30 kPa. A 15N isotope study was carried out in microplots within the 150-N plots to determine the fate of applied N. The yield under aerobic conditions with 150 kg N ha–1 was 6.3 t ha–1 in 2002 and 4.2 t ha–1 in 2003, and the irrigation water input was 778 mm in 2002 and 826 mm in 2003. Compared with flooded conditions, the yield was 15 and 39% lower, and the irrigation water use 36 and 41% lower in aerobic plots in 2002 and 2003, respectively. N content at 150 kg N ha–1 in leaves and total plant was nearly the same for aerobic and flooded conditions, indicating that crop growth under aerobic conditions was limited by water deficit and not by N deficit. Under aerobic conditions, average fertilizer N recovery was 22% in both the main field and the microplot, whereas under flooded conditions, it was 49% in the main field and 36% in the microplot. Under both flooded and aerobic conditions, the fraction of 15N that was determined in the soil after the growing season was 23%. Since nitrate contents in leachate water were negligible, we hypothesized that the N unaccounted for were gaseous losses. The N unaccounted for was higher under aerobic conditions than under flooded conditions. For aerobic rice, trials are suggested for optimizing dose and timing of N fertilizer. Also further improvements in water regime should be made to reduce crop water stress.  相似文献   

16.
Summary By contrast of strong phosphorus-zinc antagonism in upland crops, P strongly enhanced Zn uptake in flooded rice on a calcareous soil. Radioisotopic studies indicated increase to occur preferentially from applied Zn fertilizer. Phosphorus appeared to stimulate uptake predominantly by enhancing Zn concentration in soil solution and by increasing metabolic Zn absorption by plant roots. The ‘A’ value was not a reliable measure of labile soil Zn for rice as it markedly changed with levels of P and Zn fertilizers. No. VI in the series: Phosphorus-zinc interaction in rice. No. VI in the series: Phosphorus-zinc interaction in rice.  相似文献   

17.
Aerobic rice is a production system where adapted rice varieties are established via direct seeding in non-puddled, non-flooded, non-saturated fields and grown under conditions similar to upland conditions. On land cultivated continuously with aerobic rice, a yield reduction has been observed. The rice root-knot nematode Meloidogyne graminicola is considered one of the possible causes of these yield reductions. Resistance to and tolerance for M. graminicola are essential traits for aerobic rice cultivars in alleviating this problem. In our study, the host response of nineteen aerobic, seven upland and four lowland rice genotypes which are either being used in the International Rice Research Institute’s aerobic rice breeding programme or already cultivated by farmers in Asia was evaluated under aerobic soil conditions in an outdoor raised-bed experiment. Our study showed a large variation in susceptibility and sensitivity to M. graminicola infection among the rice genotypes examined. Resistance comparable to the resistant reference genotypes included in the experiment (CG14, TOG5674, TOG7235) was not found but in terms of susceptibility, the upland genotype Morobereken may be an interesting less-susceptible genotype. Tolerance was found and in terms of sensitivity, the high yielding aerobic genotype IR78877-208-B-1-2 may be an interesting tolerant genotype. Our study also allowed the identification of rice genotypes that are either highly susceptible or sensitive to M. graminicola infection and of which the cultivation should be discouraged. On average, M. graminicola caused an almost 30% reduction in yield. Excluding the two susceptible and three resistant reference genotypes included in the experiment, most affected was dry-shoot biomass (23.6% reduction) followed by root length, which was more affected than fresh-root weight (19.8 vs. 8%) and grain filling (17.3%), while plant height and the number of spikelets/panicle were less affected (10.2 and 8.1%, respectively). Neither tillering nor the number of panicles/plant were affected.  相似文献   

18.
“Aerobic rice” system is the cultivation of nutrient-responsive cultivars in nonflooded and nonsaturated soil under supplemental irrigation. It is intended for lowland areas with water shortage and for favorable upland areas with access to supplementary irrigation. Yield decline caused by soil sickness has been reported with continuous monocropping of aerobic rice grown under nonflooded conditions. The objective of this study was to determine the growth response of rice plant to oven heating of soil with a monocropping history of aerobic rice. A series of pot experiments was conducted with soils from fields where rice has been grown continuously under aerobic or anaerobic (flooded) conditions. Soil was oven heated at different temperatures and for various durations. Plants of Apo, an upland variety that does relatively well under the aerobic conditions of lowland, were grown aerobically without fertilizer inputs in all six experiments. Plants were sampled during vegetative stage to determine stem number, plant height, leaf area, and total biomass. Heating of soil increased plant growth greatly in soils with an aerobic history but a relatively small increase was observed in soils with a flooded history as these plants nearly reached optimum growth. A growth increase with continuous aerobic soil was already observed with heating at 90°C for 12 h and at 120°C for as short as 3 h. Maximum plant growth response was observed with heating at 120°C for 12 h. Leaf area was most sensitive to soil heating, followed by total biomass and stem number. We conclude that soil heating provides a simple and quick test to determine whether a soil has any sign of sickness that is caused by continuous cropping of aerobic rice.  相似文献   

19.
We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter‐intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn‐deficient flooded soil at high and low planting densities and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO2 in the rhizosphere soil solution and resulting increases in pH. We suggest that the increases in pH caused solubilization of soil Zn by dissolution of alkali‐soluble, Zn‐complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO2 through root aerenchyma were responsible for the genotype and planting density effects.  相似文献   

20.
Summary The effects of exchangeable sodium percentage (ESP) levels of 82, 72, 65 and 35 and 0, 15 and 30 days of presubmergence (submergence prior to the transplanting of rice) on yield and chemical composition of rice and availability of Fe, Mn, Zn and P in soil were studied factorially in a field experiment. Presubmergence increased rice yields at all ESP levels, the effect being more pronounced at high ESP's. Increasing ESP decreased yields and the contents of Ca, Mg, K, Fe, Mn, Zn and Cu but increased that of P and Na in the crop. Presubmergence enhanced absorption of all the above elements by the crop except P, K, Mg, Zn and Cu in the grain and decreased Na in grain and straw. Growing of rice under submerged conditions also facilitated the improvement of these soils. Effects of submergence and ESP on the availability of Fe, Mn, Zn and P in soil and their role in the nutrition of rice are discussed. The results suggest that 15 to 30 days presubmergence improved rice yields on a calcareous sodic soil of the Indo-Gangetic alluvial plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号