首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A molecular phylogeny of the fungus gnat family Mycetophilidae based on the nuclear 18S, 28S, and the mitochondrial 16S rRNA genes is presented. The total alignment included 58 taxa and 1704 bp. The family was recovered as monophyletic in parsimony and Bayesian analyses. In the Bayesian analysis, Mycetophilinae and its two tribes, Mycetophilini and Exechiini, were monophyletic with good statistical support. The subfamily Mycomyinae was found consistently in a sister‐group relationship to Mycetophilinae. Gnoristinae was rendered paraphyletic, subtending Mycomyinae and Mycetophilinae. Within Gnoristinae, the genera Coelosia Winnertz, Boletina Staeger, Gnoriste Meigen group with Docosia Winnertz, usually considered to be a member of Leiinae. No support was found for the monophyly of the subfamilies Sciophilinae and Leiinae.  相似文献   

2.
中国菌蚊科属的系统发育关系分析(双翅目:眼菌蚊总科)   总被引:1,自引:1,他引:0  
采用Hennig 86程序,以柄菌蚊科和喙菌蚊科代表种为外群,选取48个特征,使用mhen-nig^*和bb^*指令在586微机上运算,首次对菌蚊科中5亚科28属的28种进行支序分析,探讨各分类单元系统发育关系。结果表明:菌蚊亚科与滑菌蚊亚科的亲缘关系较近,二者互为姐妹群,粘菌蚊亚科属于原始类群;菌蚊亚科为5个亚科中的进化类群;邻菌蚊亚科可能为并系群;真菌蚊亚科是介于邻菌蚊亚科与菌蚊亚科之间的类群。  相似文献   

3.
The phylogeny of selected genera from four subfamilies of fungus gnats (Diptera: Mycetophilidae) – Manotinae, Leiinae, Sciophilinae and Gnoristinae (including Metanepsiini) – is reconstructed based on the combined analysis of five mitochondrial (12S, 16S, COI, COII, cytB) and two nuclear (28S, ITS2) gene markers. Results of the different analyses all support Manotinae as a monophyletic group, with Leiinae as the sister group. Allactoneura DeMeijere is nested in the monophyletic and strongly supported clade of Leiinae. The tribe Metanepsiini is revealed as paraphyletic and the genera Metanepsia Edwards and Chalastonepsia Søli do not appear to be closely related. The genera Docosia Winnertz, Ectrepesthoneura Enderlein, Novakia Strobl and Syntemna Winnertz were placed with a group of genera included traditionally in the Gnoristinae. The monophyly of Dziedzickia Johannsen and Phthinia Winnertz is not supported. The genera of Sciophilinae (excluding Paratinia Mik but including Eudicrana Loew) form a monophyletic group in the Bayesian model.  相似文献   

4.
The phylogeny of the fungus gnat tribe Exechiini (Diptera: Mycetophilidae) is reconstructed based on the combined analysis of five nuclear (18S, two parts of 28S, CAD, EF1α) and two mitochondrial (12S, COI) gene markers. According to known fossil record, and recent higher‐level phylogenies, the tribe constitutes the most apomorphic, distinctly monophyletic clade of the family Mycetophilidae. The tribe originated in the Paleogene and apparently quickly diversified in the Neogene with an unusual rapid radiation of complex male terminalia. Earlier attempts to reconstruct the phylogeny of the tribe, based on both morphology and molecular methods, have not yielded reliable hypotheses, neither in terms of resolution nor in terms of support for major clades. Increased taxon sampling and wider gene sampling have been suggested to achieve better phylogenetic resolution. Aiming at this, we present new phylogenies, for the first time with all known genera and subgenera of Exechiini represented. While many terminal intergeneric relationships are well supported, both in maximum likelihood and in Bayesian analyses, most of the major, deeper clades remain poorly supported. We suggest that a rapid radiation event close to the root may be causing the low resolution at this level in the phylogeny. This contrasts parallel phylogenies of the older subfamilies and tribes of the family Mycetophilidae, where traditional clades have usually been recovered with high support. Further in‐depth studies into the evolutionary history of the tribe are needed to enlighten and coalesce the specific phenomena driving their unique morphological, genetic and phylogeographic histories.  相似文献   

5.
毛蚊科是双翅目长角亚目的一类昆虫,其种类丰富,广布世界各地。毛蚊化石记录较为丰富,但往往都是保存于湖相沉积地层中,琥珀中的化石较为罕见。本文根据缅甸北部克钦地区产出的白垩纪中期琥珀中保存的昆虫标本建立了1新属新种——缅甸白垩叉毛蚊(Cretpenthetria burmensis gen. et sp. nov.),归入毛蚊科。本新属与毛蚊科其他属的主要区别在于:1)触角细长,长度是头部长度的2倍; 2) Sc终止于翅中部且于R_(2+3+4+5)基部1/3处; 3) R_(2+3)与R_(2+3+4+5)和Rs长度相等。该标本的发现不仅提高了白垩纪克钦琥珀中毛蚊类的生物多样性,也为毛蚊科的早期演化提供了重要的三维形态学证据。  相似文献   

6.
Martinsson, S., Kjærandsen, J. & Sundberg, P. (2011). Towards a molecular phylogeny of the fungus gnat genus Boletina (Diptera: Mycetophilidae). —Zoologica Scripta, 40, 272–281. Boletina is a species rich genus of fungus gnats (Diptera: Mycetophilidae) with a mainly Holarctic distribution. The systematics within the genus has gained little attention and this is a first attempt to shed some light over the systematics of Boletina and to test the segregation of the genera Saigusaia and Aglaomyia from Boletina. The nuclear marker 28S and mitochondrial 16S, COI and CytB were amplified and sequenced for 23 taxa that were analysed separately and together with a broad sample of outgroup taxa obtained from GenBank, where also 18S sequences were added. Phylogenies were estimated using maximum likelihood, Bayesian inference and parsimony. We strengthen the hypothesized sister‐group relationship between Docosia and Boletina, but the genus Boletina as currently delimited appears to be paraphyletic and nested in a clade together with Aglaomyia, Coelosia and Gnoriste. The genus Saigusaia, on the other hand, seems to be well separated from Boletina. The Boletina erythropyga species group is consistently found as a distinct basal clade within Boletina s.l. The results obtained are otherwise ambiguous both for the taxa in focus and in some analyses globally with a statistically supported total breakdown of the traditional higher classification into tribes, subfamilies and even families. Interestingly, this breakdown almost disappeared when additional 18S sequences were added.  相似文献   

7.
A geometric morphometric analysis was conducted on wing‐vein landmarks on exemplar species of the family Simuliidae of the following genera: Parasimulium, Gymnopais, Twinnia, Helodon, Prosimulium, Greniera, Stegopterna, Tlalocomyia, Cnephia, Ectemnia, Metacnephia, Austrosimulium, and Simulium. Generalized least squares superimposition was performed on landmarks, followed by a principal component analysis on resulting Procrustes distances. Patterns of shape change along the principal component axes were visualized using the thin‐plate spline. The analysis revealed wing shape diversity through (1) the insertion points of the subcosta and R1, resulting in the terminus of the costa exhibiting a trend towards a more apical position on the wing, and (2) the insertion point of the humeral cross vein, resulting in the anterior branch of the media exhibiting a trend toward a more basal position on the wing. Canonical variates analysis of Procrustes distances successfully assigned all exemplar species into their a priori taxonomic groupings. The diversity in wing shape reveals a trend towards decreased length of basal radial cell and increased costalization of anterior wing veins in the evolutionary transition from plesiomorphic prosimuliines to more derived simuliines. The functional significance of these evolutionary transitions is discussed. © 2013 The Linnean Society of London  相似文献   

8.
The molecular phylogeny of flat‐footed flies is inferred from analysis of DNA sequence data from the five mitochondrial genes 12S, 16S, COI, COII and CytB, and the nuclear gene 28S and discussed with the recent systematics based on morphological features. The Bayesian inference, maximum likelihood and maximum parsimony analyses included 42 species of 18 genera, representing all four extant subfamilies (Microsaniinae, Melanderomyiinae, Callomyiinae and Platypezinae) and all known genera except one (Metaclythia). Representatives of the brachycerous taxa Lonchopteridae, Phoridae, Sciadocerinae (Phoridae) and Opetiidae are used as outgroups, and Lonchoptera was used to root the trees. Our results show Platypezidae consisting of two well‐supported clades, the first with the subfamilies Melanderomyiinae + Callomyiinae and the second formed by subfamily Platypezinae. Genus Microsania was resolved as a separate lineage distant from Platypezidae which clustered with Opetiidae as its sister group, both together forming a sister group to Platypezidae. At the generic level, the genus Agathomyia proved not to be monophyletic in any of the analyses. The species Chydaeopeza tibialis is sister to Agathomyia sexmaculata, and consequently, the genus Chydaeopeza Shatalkin, 1992 is a new junior synonym of Agathomyia Verrall, 1901. Bifurcated setae on legs of adult Platypezidae are documented as a new synapomorphy of the family, exclusive of Microsania. Outstretched wings and only a small overlap of their surfaces at resting position are considered a new synapomorphy for the subfamily Platypezinae. Other phylogenetically important characters defining main clades are documented, and their relevance/validity in phylogenetic studies is discussed. The current systematic concept of Platypezidae is discussed, and new phylogenetic hypotheses are proposed.  相似文献   

9.
The first phylogeny of the lacewing family Osmylidae is presented here based on a total evidence analysis of DNA sequences for multiple gene loci and morphology for representatives of almost all extant genera. Our phylogeny shows a basal dichotomy in the family, with subfamilies Protosmylinae, Spilosmylinae and Gumillinae comprising one lineage, and the other lineage including Osmylinae, Porisminae, Eidoporisminae, Kempyninae and Stenosmylinae. The status of Paryphosmylus Krüger and Lysmus Navás as members of Protosmylinae is affirmed as well as the placement of Gumillinae near Protosmylinae and Spilosmylinae. Our results suggest that Porisminae, Eidoporisminae and Stenosmylinae evolved from a common ancestor, and their relationships, including likely paraphyly of Stenosmylinae, requires further assessment. Divergence time analysis revealed that the family originated during the Late Permian before the break‐up of the supercontinent Pangaea and that present generic distributions are not due to Gondwanan biogeographic events. All major subfamily‐level lineages were present by the end of the Triassic, in agreement with the rich Mesozoic‐aged fossil record for the family.  相似文献   

10.
A molecular phylogeny of New World emballonurid bats based on parsimony and Bayesian analyses of loci from the three different nuclear genetic transmission pathways in mammals (autosomal, X, and Y chromosomes) is well supported and independently corroborated by each individual gene tree. This is in contrast to a single most parsimonious but poorly supported tree based on morphological data, which has only one intergeneric or higher relationship shared with the molecular phylogeny. Combining the morphological and molecular data partitions results in a tree similar to the molecular tree suggesting a high degree of homoplasy and low phylogenetic signal in the morphological data set. Behavioral data are largely incomplete and likewise produce a poorly resolved tree. Nonetheless, patterns of evolution in morphology and behavior can be investigated by using the molecular tree as a phylogenetic framework. Character optimization of the appearance of dorsal fur and preferred roosting sites maps consistently and are correlated on the phylogeny. This suggests an association of camouflage for bats with unusual appearance (two dorsal stripes in Rhynchonycteris and Saccopteryx, or pale fur in Cyttarops and Diclidurus) and roosting in exposed sites (tree trunks or under palm leaves). In contrast, the ancestral states for Old and New World emballonurids are typically uniform brown or black, and they usually roost in sheltered roosts such as caves and tree hollows. Emballonuridae is the only family of bats that has a sac-like structure in the wing propatagium, which is found in four New World genera. Mapping the wing sac character states onto the phylogeny indicates that wing sacs evolved independently within each genus and that there may be a phylogenetic predisposition for this structure. Ear orientation maps relatively consistently on the molecular phylogeny and is correlated to echolocation call parameters and foraging behavior, suggesting a phylogenetic basis for these character systems.  相似文献   

11.
A phylogeny of the lacewing family Nymphidae based on morphology and DNA sequences is presented including representatives of all living genera and selected fossil genera. Widely distributed Jurassic and Cretaceous genera gave rise to recent taxa now restricted to Australasia. Two previously defined clades (i.e. Nymphinae and Myiodactylinae) were recovered and reflect the diverging adult and larval morphology of members of these two subfamilies. From Chinese Cretaceous deposits, a new genus (Spilonymphes gen. nov.) is described with one new species, as well as new species described in the genera Baissoleon Makarkin and Sialium Westwood.  相似文献   

12.
The frenulum is a wing coupling structure that is found on the wings of most families of Lepidoptera. It is a single bristle or set of bristles that originate from the base of the hindwing that often interlocks with the forewing during flight. This wing coupling mechanism is thought to have been a major evolutionary innovation that allowed for enhanced flight in Lepidoptera. The sack-bearer moths (Mimallonidae) are unusual among Lepidoptera in that not all species within the family have a frenulum. We test the hypothesis that the frenulum is not necessary and is therefore lost in mimallonids that have longer male forewings, because such wings are perhaps better suited to be coupled by other means. To understand the evolution of the frenulum, we inferred the most taxonomically and genetically sampled anchored hybrid enrichment-based phylogeny of Mimallonidae, including 604 loci from all 41 genera and from 120 species, covering about 40% of the described species in the family. The maximum likelihood tree robustly supports major relationships within the family, and ancestral state reconstruction clearly recovers the frenulum as the plesiomorphic condition in Mimallonidae. Our results show that the frenulum is more often observed in species that have shorter, rather than longer, male forewings. The frenulum has historically been used as an important character for intrafamilial classification in Mimallonidae, but our results conclusively show that this character system is more variable than previously thought. Based on our results, we erect two new subfamilies, Roelofinae St Laurent & Kawahara, subfam.n. and Meneviinae St Laurent, Herbin, & Kawahara, subfam.n. , for four genera previously considered incertae sedis. In the predominantly frenulum-lacking clade Cicinninae, we describe a new genus, Cerradocinnus St Laurent, Mielke, & Kawahara, gen.n. , and the genus Gonogramma stat. rev. is revalidated to include many species previously placed in Cicinnus sensu lato. With these changes, Cicinnus can now be considered monophyletic. Thirty-three species are transferred to Gonogramma from Cicinnus sensu lato. This published work has been registered on Zoobank, http://zoobank.org/urn:lsid:zoobank.org:pub:E33100E1-DA6A-4814-A312-36CBAA168B8B .  相似文献   

13.
The morphological based taxonomy of highly derived parasite groups is likely to poorly reflect their evolutionary relationships. The taxonomy of the monogenean family Capsalidae, which comprises approximately 180 species of flatworm parasites that predominantly attach to external surfaces of chondrichthyan and teleost fishes, is based mainly on six morphological characters. The phylogenetic history of the family is largely unknown. We reconstructed the phylogenetic relationships of 47 species in 20 genera from eight of the nine subfamilies, from nucleotide sequences of three unlinked nuclear genes, 28S ribosomal RNA, Histone 3 and Elongation Factor 1 α. Our phylogeny was well corroborated, with 75% of branches receiving strong support from both Bayesian posterior probabilities and maximum likelihood bootstrap proportions and all nodes showed positive partitioned likelihood support for each of the three genes. We found that the family was monophyletic, with the Gyrodactylidae and Udonellidae forming the sister group. The Capsalinae was monophyletic, however, our data do not support monophyly for the Benedeniinae, Entobdellinae and Trochopodinae. Monophyly was supported for Capsala, Entobdella, Listrocephalos, Neobenedenia and Tristoma, but Benedenia and Neoentobdella were polyphyletic. Comparisons of the distribution of character states for the small number of morphological characters on the molecular phylogeny show a high frequency of apparent homoplasy. Consequently the current morphological classification shows little correspondence with the phylogenetic relationships within the family.  相似文献   

14.
Abstract Stibadocerina Alexander, a monotypic genus, includes the only known Neotropical species of the family Cylindrotomidae, S. chilensis Alexander, 1929 , from South Central Chile (ca. 36°50′S–42°17′S). In this paper, Stibadocerina chilensis is redescribed and illustrated in detail. A study of wing‐vein homology in the subfamily Stibadocerinae is provided, to identify the components of the reduced radial sector in Stibadocerina and related taxa. The proposed hypotheses of wing‐vein homology are tested, and the systematic position of Stibadocerina is assessed through a cladistic analysis of 13 characters of the male imago, scored for exemplar species of the four genera included in the Stibadocerinae. A single most parsimonious tree supports the monophyly of the Stibadocerinae and the following relationships among its included genera: Stibadocerodes [Stibadocera (Stibadocerella +Stibadocerina)]. The subfamily includes one example of a vicariant distribution with a sister‐group relationship between South Central Chilean and East Asian taxa, and supports a biogeographical interpretation of an ancestral trans‐Pacific biota.  相似文献   

15.
The phylogeny of spider flies is presented based on an analysis of DNA sequence data combined with morphological characters for both living and fossil species. We sampled 40 extant and extinct genera across all major lineages of Acroceridae, which were compared with outgroup taxa from various lower brachyceran families. In all, 81 morphological characters of 60 extant and 10 extinct ingroup species were combined with 7.1 kb of DNA sequences of two nuclear (CAD and 28S rDNA) and two mitochondrial genes (COI and 16S rDNA). Results strongly support the monophyly of Acroceridae, with major clades contained within classified here in five extant subfamilies (Acrocerinae, Cyrtinae stat. rev. , Ogcodinae stat. rev. , Panopinae and Philopotinae) and one extinct subfamily, Archocyrtinae. The evolution of important spider fly traits is discussed, including genitalia and wing venation. The status of the enigmatic Psilodera Gray and Pterodontia Gray as members of the Panopinae is confirmed based on both molecular and morphological data.  相似文献   

16.
The win structure of the New Zealand nannochoristid currently known as Microchorista philgotti: (Tillyard, 1917) is described and discussed. Tubular wing vein sclerotizations are developed in the uper win cuticle only. Shortening of the hindwing CuP-A anastomosis to a single point cannot ge uphed as a nannochoristid autapomorphy. Absence of the Rs3-Rs4 crossvein (the diagnostic character for Microchorista) and, perhaps, presence of specialized microtrichia patches on the fore wing are autapomorphic of the New Zealand species. Since the genus Nannochorista, comprising the Australian/Tasmanian and S. American nannochoristids, according to available evidence is paraphyletic in terms of Microchorista the latter is synonymized with the former.  相似文献   

17.
Gómez‐Moliner, B.J., Elejalde, A.M., Arrébola, J.R., Puente, A.I., Martínez‐Ortí, A., Ruiz, A. & Madeira, MJ. (2012). Molecular phylogeny of the Helicodontidae and Trissexodontidae (Gastropoda). —Zoologica Scripta, 00, 000–000. In this study, we present a molecular phylogeny of the Trissexodontidae and Helicodontidae obtained by means of Maximum Parsimony, Neighbor Joining, Maximum Likelihood and Bayesian analyses of DNA sequences. Nearly 3 KB of sequence data of two mitochondrial genes (COI, 16S rDNA) and the nuclear rRNA gene cluster including ITS‐1, the 3′end of the 5.8S gene, the complete ITS‐2 region and 5′ end of the large subunit 28S were used to reconstruct the phylogeny of these two families. Monophyly of Trissexodontidae and Helicodontidae at the family level is well supported. A new classification of the genera in the Trissexodontidae is proposed. It includes two subfamilies: Gittenbergeriinae (monotypic for Gittenbergeria turriplana) and Trissexodontinae. The latter includes three strongly supported tribes: (i) Trissexodontini, including Mastigophallus, Trissexodon, Oestophorella and Suboestophora; (ii) Oestophorini, with Oestophora; and (iii) Caracollinini, with Caracollina, Gasulliella, Gasullia and Hatumia. The polytypic Oestophora and Suboestophora are recovered as two monophyletic genera. The anatomy of the auxiliary copulatory organs of the reproductive system is coherent with the new taxonomic interpretation of the Trissexodontidae. Further work, including some more taxa is needed to delimitate subfamilies within Helicodontidae. Finally, the addition of some sequences of other Helicoidea shows that the genus Ciliella is not closely related to Trissexodontidae, being grouped within the Hygromiidae, instead.  相似文献   

18.
Molecular sequences now overwhelm morphology in phylogenetic inference. Nonetheless, most molecular studies are conducted on a limited number of taxa, as DNA rarely can be analysed from old museum types or fossils. During the last 20 years, more than 150 molecular studies have challenged the current phylogenetic classification of the family Drosophilidae Rondani based on morphological characters. Most studies concerned a single genus, Drosophila Fallén, and included only few representative species from 17 out of the 78 genera of the family. Therefore, these molecular studies were unable to provide an alternative classification scheme. A supermatrix analysis of seven nuclear and one mitochondrial genes (8248 bp) for 33 genera was conducted using outgroups from one calyptrate and four ephydroid families. The Bayesian phylogeny was consistent with previous molecular studies including whole genome sequences and divided the Drosophilidae into four monophyletic clades. Morphological characters, mostly male genitalia, then were compared thoroughly between the four clades and homologous character states were identified. These states were then checked for 70 genera and a revised phylogenetic, family‐group classification for the Drosophilidae is proposed. Two genera –Cladochaeta Coquillett and Diathoneura Duda – of the tribe Cladochaetini Grimaldi are transferred to the family Ephydridae. The Drosophilidae is divided into two subfamilies: Steganinae Hendel (30 genera) and Drosophilinae Rondani (43 genera). A further two genera, Apacrochaeta Duda and Sphyrnoceps de Meijere, are incertae sedis, and Palmophila Grimaldi, is synonymized with Drosophila syn.n. The Drosophilinae is subdivided into two tribes: the re‐elevated Colocasiomyini Okada (nine genera) and Drosophilini Okada. The paraphyly of the genus Drosophila was not resolved to avoid affecting the binomina of important laboratory model species; however, its subgeneric classification was revised in light of molecular and morphological data. Three subgenera, namely Chusqueophila Brncic, Phloridosa Sturtevant and Psilodorha Okada, were synonymized with the subgenus Drosophila (Drosophila) Fallén syns.n. Among the 45 species groups and 5 species complexes of Drosophila (Drosophila), 22 groups and 1 complex were transferred to the subgenus Drosophila (Siphlodora) Patterson & Mainland and 6 groups, 2 species subgroups and 3 complexes are considered incertae sedis within the genus Drosophila. Different morphological characters provide different signals at different phylogenetic scales: thoracic characters (wing venation and presternal shape) discriminate families; grasping and erection‐related characters discriminate subfamilies to tribes; whereas phallic paraphyses, i.e. auxiliary intromittent organs, discriminate genera and Drosophila subgenera. The study shows the necessity of analysing morphological characters within a molecular phylogenetic framework to translate molecular phylogenies into taxonomically‐comprehensive classifications.  相似文献   

19.
Tropical wandering spiders (Ctenidae) are a diverse group of cursorial predators with its greatest species richness in the tropics. Traditionally, Ctenidae are diagnosed based on the presence of eight eyes arranged in three rows (a 2–4–2 pattern). We present a molecular phylogeny of Ctenidae, including for the first time representatives of all of its subfamilies. The molecular phylogeny was inferred using five nuclear (histone H3, 28S, 18S, Actin and ITS-2) and four mitochondrial (NADH, COI, 12S and 16S) markers. The final matrix includes 259 terminals, 103 of which belong to Ctenidae and represent 28 of the current 49 described genera. We estimated divergence times by including fossils as calibration points and biogeographic events, and used the phylogenetic hypothesis obtained to reconstruct the evolution of the eye conformation in the retrolateral tibial apophysis (RTA) clade. Ctenidae and its main lineages originated during the Paleocene–Eocene and have diversified in the tropics since then. However, in some analyses Ctenidae was recovered as polyphyletic as the genus Ancylometes Bertkau, 1880 was placed as sister to Oxyopidae. Except for Acantheinae, in which the type genus Acantheis Thorell, 1891 is placed inside Cteninae, the four recognized subfamilies of Ctenidae are monophyletic in most analyses. The ancestral reconstruction of the ocular conformation in the retrolateral tibial apophysis clade suggests that the ocular pattern of Ctenidae has evolved convergently seven times and that it has originated from ocular conformations of two rows of four eyes (4–4) and the ocular pattern of lycosids (4–2–2). We also synonymize the monotypic genus Parabatinga Polotov & Brescovit, 2009 with Centroctenus Mello-Leitão, 1929. We discuss some of the putative morphological synapomorphies of the main ctenid lineages within the phylogenetic framework offered by the molecular phylogenetic results of the study.  相似文献   

20.

The Proterodiplostomidae Dubois, 1936 is a relatively small family of diplostomoidean digeneans parasitising the intestines of reptilian hosts associated with freshwater environments in tropical and subtropical regions. The greatest diversity of proterodiplostomids is found in crocodilians, although some parasitise snakes and turtles. According to the most recent revision, the Proterodiplostomidae included 17 genera within 5 subfamilies. Despite the complex taxonomic structure of the family, availability of testable morphology-based phylogenetic hypotheses and ancient hosts, molecular phylogenetic analyses of the group were practically lacking. Herein, we use novel DNA sequence data of the nuclear lsrRNA gene and mitochondrial cox1 gene from a broad range of proterodiplostomid taxa obtained from crocodilian, fish, and snake hosts on four continents to test the monophyly of the family and evaluate the present morphology-based classification system of the Proterodiplostomidae in comparison with the molecular phylogeny. This first detailed phylogeny for the Proterodiplostomidae challenges the current systematic framework. Combination of molecular phylogenetic data with examination of freshly collected quality specimens and re-evaluation of morphological criteria resulted in a number of systematic and nomenclatural changes along with a new phylogeny-based classification of the Proterodiplostomidae. As the result of our molecular and morphological analyses: (i) the current subfamily structure of the Proterodiplostomidae is abolished; (ii) three new genera, Paraproterodiplostomum n. g., Neocrocodilicola n. g. and Proteroduboisia n. g., are described and Pseudoneodiplostomoides Yamaguti, 1954 is restored and elevated from subgenus to genus level; (iii) two new species, Paraproterodiplostomum currani n. g., n. sp. and Archaeodiplostomum overstreeti n. sp., are described from the American alligator in Mississippi, USA. Comparison of the structure of terminal ducts of the reproductive system in all proterodiplostomid genera did not support the use of these structures for differentiation among subfamilies (or major clades) within the family, although they proved to be useful for distinguishing among genera and species. Our study includes the first report of proterodiplostomids from Australia and the first evidence of a snake acting as a paratenic host for a proterodiplostomid. A key to proterodiplostomid genera is provided. Questions of proterodiplostomid-host associations parasitic in crocodilians are discussed in connection with their historical biogeography. Our molecular phylogeny of the Proterodiplostomidae closely matches the current molecular phylogeny of crocodilians. Directions for future studies of the Proterodiplostomidae are outlined.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号