首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Vehicular Ad Hoc Networks (VANETs), designed to ensure the safety and comfort of passengers via the exchange of information amongst nearby vehicles or between the vehicles and Roadside Units (RSUs), have attracted particular attention. However, the success of many VANET applications depends on their ability to estimate the vehicle position with a high degree of precision, and thus, many vehicle localization schemes have been proposed. Many of these schemes are based on vehicle‐mounted Global Positioning System (GPS) receivers. However, the GPS signals are easily disturbed or obstructed. Although this problem can be resolved by vehicle‐to‐vehicle communication schemes, such schemes are effective only in VANETs with a high traffic density. Accordingly, this paper presents a VANET localization scheme in which each vehicle estimates its location on the basis of beacon messages broadcast periodically by pairs of RSUs deployed on either side of the road. In addition, three enhancements to the proposed scheme are presented for the RSU deployment, RSU beacon collisions, and RSU failures. Overall, the ns‐2 simulation results show that the localization scheme achieves a lower localization error than existing solutions on the basis of vehicle‐to‐vehicle communications and is robust toward changes in the traffic density and the vehicle speed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Long‐term evolution (LTE) technology is critical for the envisioned usage scenarios in the Internet of Vehicles. An important usage scenario is traffic information systems (TIS) for vehicular ad hoc networks (VANETs) that depend on LTE for the delivery of non‐safety information to vehicles. TISs are centralized data warehouses that collect and process traffic information and subsequently allow vehicles to receive such information before and during a road trip. Considering the extensive deployment of VANETs, the LTE demand for TIS is expected to increase. Therefore, we explore and quantify the inefficiency of LTE when used in TIS. By envisioning basic test case scenarios, we establish the trends of data usage while commuting and providing insights into how LTE usage in TIS may lead to the inefficient use of the available wireless spectrum during road trips. To reduce identified inefficiency in LTE usage and cluster instability due to the high speed of the vehicles, we proposed a novel stable interest‐aware clustering (SIAC) mechanism. SIAC consider VANETs mobility constraint, LTE link quality, and exploit interest of the vehicles, in cluster formation phase. Resulting in the reduction in the data demand of the vehicles and frequency of link failures among the vehicles and provides transmission path stability. SIAC performs well as compared with the existing approaches shows more cluster stability and reduces the LTE usage for driving assistance and route planning applications.  相似文献   

3.
Vehicular Ad hoc Networks, also known as VANETs, enable vehicles that are not necessarily within the same radio transmission range to communicate with each other. VANETs also allow vehicles to connect to Roadside Units (RSUs). The latter are connected to the Internet, forming a fixed infrastructure that offers them the capability of communicating with each other and with roaming vehicles. RSUs support cooperative and distributed applications in which vehicles and RSUs work together to coordinate actions and to share and process several types of information. RSUs have so far been used for different roles such as data disseminators, traffic directories, location servers, security managers, and service proxies. In this paper, we focus on routing; namely we exploit RSUs to route packets between any source and destination in the VANET. To our knowledge, this is the first attempt to use the RSU backbone to efficiently route packets to very far locations in VANETs by using geographic forwarding. We evaluate the RSU backbone routing performance via the ns2 simulation platform. We compare our scheme to existing solutions and prove the feasibility and efficiency of our scheme in terms of query delay, packet success delivery ratio, and total generated traffic.  相似文献   

4.
Zhang  Xiaojun  Wang  Wenchen  Mu  Liming  Huang  Chao  Fu  Hong  Xu  Chunxiang 《Wireless Personal Communications》2021,120(4):3171-3187

Vehicular ad-hoc network (VANET) has been considered as one of the most promising wireless sensor technologies, which could enhance driving convenience and traffic efficiency through real-time information interaction. Nevertheless, emerging security issues (e.g., confidentiality, integrity, identity privacy, message authentication) will hinder the widespread deployment of VANETs. To address these issues, in this paper, we propose an efficient privacy-preserving anonymous authentication protocol for VANETs. We first design an identity-based signature algorithm, and exploit it with an account information of a vehicle to propose our anonymous authentication protocol. The protocol enables each vehicle to anonymously send an authenticated message to nearby roadside units (RSUs) in a confidential way, and efficiently check the feedback information from nearby RSUs. Simultaneously, the protocol achieves key-exchange functionality, which could produce a session key for later secure communication between vehicles and RSUs. Finally, we give the security analysis of the proposed protocol and conduct a comprehensive performance evaluation, the results demonstrate its feasibility in the secure deployment of VANETs.

  相似文献   

5.
The rapid growth of vehicular applications has resulted in high demand for Internet technology, which demands an unprecedented network capacity and a high quality of service (QoS). In vehicular ad hoc networks (VANETs), since nodes (vehicles) are highly mobile. The dynamic nature of the network topology in the VANET system changes due to frequent changes in link connectivity. The vehicles-to-vehicles (V2V), vehicles-to-infrastructure (V2I), and QoS, as well as the heterogeneity of applications within the VANET. VANETs have been introduced to make driving comfortable by providing safety and support to drivers. Due to the flexibility and offloading schemes available in-vehicle applications, there are some limitations. However, there are many issues in providing optimum service provisioning and scheduling in the vehicular environment. In VANETs, BSs and roadside units (RSUs) improve QoS. However, Internet services transmit packets to vehicles using stochastic models, and it predicts the traffic on a VANET. We provide open challenges to drive stochastic models in this direction.  相似文献   

6.
As vehicular networks are gaining popularity, large number of vehicles want to take advantage of these networks, by utilizing the information they have, in order to take decision. Vehicle receives data from other vehicles or from the road side units (RSUs) available across the road. Since RSUs act as router to connect with the external world as well as it is a high capacity storage place where important data (e.g. data used in traffic safety, location dependent query, etc.) can be stored for download purpose for other vehicles moving through the service area. Since the RSUs have limited communication range and vehicles usually moves at very high speed in the service area, they have limited time to serve data to vehicles moving in the service area. For this purpose RSUs have to schedule data in such a way that maximum vehicles can get benefit from the data available with the RSUs. There are many algorithms proposed in the past to schedule data at RSUs. This paper proposes a mechanism to schedule data of those vehicles which are in the coverage range of the RSU. The proposed algorithm outperforms to serve requests whose deadline is about to expire i.e. vehicles which have left the service area after forwarding request to RSU. This scheme performs well in dense network and has good results in highway scenario.  相似文献   

7.
Vehicular ad‐hoc networks have several roles in alert messages dissemination between vehicles in danger, the most important role is to provide helpful information for drivers (eg, road traffic state). But, some performance improvements are frequently needed in terms of routing. Hence, several clustering approaches have been proposed to optimize the network services. These approaches are based on increasing data delivery, reducing data congestion, and dividing the traffic into clusters. However, a stable clustering algorithm is always required in order to ensure the data dissemination in a dense, mobile, or a large‐scale environment. Therefore, in this paper, we have proposed a stable routing protocol based on the fuzzy logic system, which can deliver alert messages with minimum delay and improve the stability of clusters structure by generating only a small number of clusters in the network. In this work, the fuzzy logic system has been used to create the clusters and select a cluster head for each cluster. We have used the network simulator (NS2) to generate the results. As a result, we could reduce the cluster head changes and increase the cluster member lifetime compared with recent approaches.  相似文献   

8.
Vehicular ad hoc networks (VANETs) are witnessing in recent years a rapid development for road transmissions and are considered as one of the most important types of next generation networks, in which drivers can have access anywhere and anytime to information. However, vehicles have to deal with many challenges such as the links failures due to their frequent mobility as well as limited degrees of freedom in their mobility patterns. In this paper, we propose a new quality of service multicast and multipath routing protocol for VANETs, based on the paradigm of bee's communication, called multicast quality of service swarm bee routing for VANETs (MQBV). The MQBV finds and maintains robust routes between the source node and all multicast group members. Therefore, the average end‐to‐end delay and the normalized overhead load should be reduced, while at the same time increasing the average bandwidth and the packet delivery ratio. Extensive simulation results were obtained using ns‐2 simulator in a realistic VANET settings and demonstrated the efficiency of the proposed protocol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In recent years, Vehicle Ad Hoc Networks (VANETs) have become very popular. A VANET network is mainly constructed with an infrastructure composed of mobile vehicles and fixed Road Site Units (RSUs). RSUs are usually very expensive to install, this limits their number, especially in suburbs and areas of sparse population. Therefore, RSUs are precious resource in VANET. In order to promote the utility of RSUs, we propose a novel mechanism, Distributed Sorting Mechanism (DSM), to improve the efficiency of communication between vehicles and RSUs (Vehicle to Infrastructure, V2I). In DSM, every vehicle can individually calculate its own priority of communication, and the time to compete and obtain the channel can be reduced. We further consider the vehicles moving away from the coverage of communication and adjust their priorities of communication appropriately. Moreover, DSM owns the characteristic of “Deadline First” in specific situations. Using DSM not only simplifies the handoff procedure and reduces the network overhead, but also achieves adequate utilization of RSU resources.  相似文献   

10.
Intersection-Based Routing Protocol for VANETs   总被引:1,自引:1,他引:0  
Vehicular ad hoc network (VANET) is an emerging wireless communications technology that is capable of enhancing driving safety and velocity by exchanging real-time transportation information. In VANETs, the carry-and-forward strategy has been adopted to overcome uneven distribution of vehicles. If the next vehicle located is in transmission range, then the vehicle forwards the packets; if not, then it carries the packets until meeting. The carry mostly occurs on sparsely populated road segments, with long carry distances having long end-to-end packet delays. Similarly, the dense condition could have long delays, due to queuing delays. The proposed intersection-based routing protocol finds a minimum delay routing path in various vehicle densities. Moreover, vehicles reroute each packet according to real-time road conditions in each intersection, and the packet routing at the intersections is dependent on the moving direction of the next vehicle. Finally, the simulation results show that the proposed Intersection-Based Routing (IBR) protocol has less end-to-end delay compared to vehicle-assisted data delivery (VADD) and greedy traffic aware routing protocol (GyTAR) protcols.  相似文献   

11.
The message delivery .ratio and transmission delay is affected deeply by road traffic flow in vehicular ad hoc networks (VANETs). An opportunistic routing based on geography and road traffic flow for VANETs (ORRIS) was proposed. ORRIS leverages the knowledge of geography positions, motion vectors and road traffic flows. In order to estimate the traffic flow density, the history of encounter number of the vehicles in the opposite direction is considered in ORRIS. The forwarding decisions are made by distributed vehicles based on the geography topology and the road traffic flow. The real map based simulation results show that ORRIS has a better performance than other algorithms, especially when the road traffic is busy or the traffic flow rates have great differences between roads.  相似文献   

12.
To avoid an expected traffic jam, drivers make detours based on limited information; however, the majority following the alike routes may result in an unexpected congestion. Conventional navigation approaches are unable to respond to the unexpected congestion because these approaches do not consider the routes taken by other vehicles. Navigation systems that utilize global traffic information can improve gas consumption, CO2 emissions and travel time. Therefore, in this paper, the authors propose an autonomic navigation system (ANS) operating over vehicular ad-hoc networks (VANETs). The proposed ANS adopts a hierarchical algorithm to plan vehicle routes. The proposed ANS imitates the human nervous system when managing the navigation system, in which vehicles monitor traffic via VANETs. Moreover, this paper proposes a time-dependent routing algorithm that uses a novel traffic prediction method based on the routes of vehicles. This paper adopts EstiNet as simulator tool that dominates hundreds or thousands of VANET-based vehicles routing in two maps, Manhattan area, and Taipei city. The results show that the proposed ANS improves the average speed by 60.02 % when compared with the shortest path first (SPF) algorithm and by 15.49 % when compared with the distributed method of a traffic simulation in the Manhattan area. The proposed ANS also improves the average speed by 30.5 % when compared with the SPF algorithm and by 15.8 % when compared with the distributed method of a traffic simulation in the Taipei area. Furthermore, to emulate real environments, there is a scenario in which only a portion of the vehicles complies with the proposed ANS.  相似文献   

13.
In vehicular ad hoc networks (VANETs), communication takes place between vehicles to vehicles, the vehicles to the road side units, and vice-versa. The basic purpose of these communications is to share and exchange tremendous amount of data and information. For efficient information sharing, a systematic and structured connection establishment algorithm is needed. In VANETs, each connected node of the network need to be assigned a unique address. Hence, an algorithm is needed for the proper assignment of unique address to all nodes in the network. This paper explains different types of IP address protocols in VANETs. We have also explained advantage and disadvantage of existing IP address allocation protocols in VANETs.  相似文献   

14.
A vehicular ad hoc network (VANET) is composed mainly of fixed roadside entities (RSUs) and mobile entities (vehicles). In order to exchange information and data relating to the safety and comfort of road users, these different entities must establish communications between them. In these communications, one of the main problems is related to congestion and saturation of RSUs. In this paper, we first study the main protocols that involve RSUs in their strategy of routing by classifying them according to four levels. Furthermore, to deal with the problem of saturation of RSUs, we present a new approach of cooperation between the RSUs of a VANET in order to reduce its congestion and avoid as much as possible the saturation of these entities. This approach, called “D2A2RS” (defensive alliance–based approach for reducing RSUs saturation), is based on the concept of defensive alliances in graphs that ensures effective collaboration between RSUs. To evaluate the performance of the proposed approach, we conduct a comparative analysis by using both analytical models and simulations. The obtained comparison results have shown the efficiency and the performance of our approach compared with other concurrent approaches in the literature in terms of packet loss/success rate, end‐to‐end transmission delay, and network scalability.  相似文献   

15.
Prabakeran  S.  Sethukarasi  T. 《Wireless Networks》2020,26(8):5897-5917

Vehicular ad hoc networks (VANETs) have the ability to make changes in travelling and driving mode of people and so on, in which vehicle can broadcast and forward the message related to emergency or present road condition. The safety and efficiency of modern transportation system is highly improved using VANETs. However, the vehicular communication performance is weakened with the sudden emergence of distributed denial of service (DDoS) attacks. Among other attacks, DDoS attack is the fastest attack degrading the VANETs performance due to its node mobility nature. Also, the attackers (cyber terrorists, politicians, etc.) have now considered the DDoS attack as a network service degradation weapon. In current trend, there is a quick need for mitigation and prevention of DDoS attacks in the exploration field. To resolve the conflict of privacy preservation, we propose a fast and secure HCPDS based framework for DDoS attack detection and prevention in VANETs. The Road Side Units (RSUs) have used HCPDS algorithm to evaluate the fitness values of all vehicles. This evaluation process is done for effective detection of spoofing and misbehaving nodes by comparing the obtained fitness value with the statistical information (packet factors, RSU zone, and vehicle dynamics) gathered from the vehicles. The credentials of all worst nodes are cancelled to avoid further communication with other vehicles. In HCPDS algorithm, the PSO updation strategy is added to Dragon fly algorithm to improve the search space. In addition, Chaos theory is applied to tune the parameters of proposed HCPDS algorithm. From the experimental results, it proved that the HCPDS based proposed approach can efficiently meet the requirements of security and privacy in VANETs.

  相似文献   

16.
Vehicular ad hoc networks (VANETs) are expected in improving road safety and traffic conditions, in which security is essential. In VANETs, the authentication of the vehicular access control is a crucial security service for both inter‐vehicle and vehicle–roadside unit communications. Meanwhile, vehicles also have to be prevented from the misuse of the private information and the attacks on their privacy. There is a number of research work focusing on providing the anonymous authentication with preserved privacy in VANETs. In this paper, we specifically provide a survey on the privacy‐preserving authentication (PPA) schemes proposed for VANETs. We investigate and categorize the existing PPA schemes by their key cryptographies for authentication and the mechanisms for privacy preservation. We also provide a comparative study/summary of the advantages and disadvantages of the existing PPA schemes. Lastly, the open issues and future objectives are identified for PPA in VANETs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we propose both reactive and proactive balancing traffic path recommendation mechanisms, which we refer to as Bal‐Traf and Abs‐Bal, respectively. Bal‐Traf is initiated when a certain output road segment located at any road intersection is detected in an overloaded situation. In the event that the existing traffic density of any output road exceeds its optimal capacity, Bal‐Traf recommends that those vehicles that plan to pass over this road segment as next hop choose another, less congested output road segment. On the other hand, Abs‐Bal is a proactive balancing traffic mechanism. Its main purpose is to distribute input traffic completely even among all output road segments at intersections. Moreover, Abs‐Bal considers the best travel time of vehicles in addition to the goal of balancing traffic. From the experimental results, we can see that Bal‐Traf eliminates the number of overwhelmed road segments over the road network in scenarios with only partial network congestion. It also decreases the number of congested road segments in scenarios with complete network congestion. However, it increases the density drastically over the remaining congested road segments in these scenarios. Abs‐Bal performs well in decreasing the percentage of congested road segments and balancing traffic among road segments located throughout the road network, in the event of complete network congestion.  相似文献   

18.
To improve the fairness, the energy consumption changing pseudonyms needs to be taken into account. Existing works focus on changing velocity‐based pseudonyms changing strategy and short changes interval with limited coverage, but due to similar velocity and short changes, internal attacker guesses easily known communication and location information due to location information of vehicle on tracking, which may expose adversary private information, and frequently, pseudonyms changing occurs due to movement of vehicles' similar velocity and short coverage, which may cause serious attack of vehicle. To overcome this problem, distance and cluster can be performed. In this work, we proposed distance and cluster‐based energy pseudonyms changing method for road network. We proposed distance and energy‐based clustering routing service over road network, the cluster head elected to depend on random number of distance and energy to change pseudonyms of vehicles. An each interval to be establish cluster head vehicle deployed while selects the operation mode and informs the cluster members of the selected mode through beacon signal. The cluster head vehicle node performs the pseudonyms changing based on the predicted distance and energy of the cluster member to use clustering optimization. The data of whole network send to report server through these nodes while near the RSU, and the vehicles in this area will use less energy to change the pseudonyms. The simulation results show that the proposed method enhances pseudonyms changing strategy less consumption and delays sufficient privacy level each vehicle also our method has outperform compare with existing methods than we use Sumo simulation and Matlab tools to verify our proposed method. Our proposed method outperformed in terms of pseudonym changing energy efficiency to careful attention during the cluster formation process, stable and balanced clusters that prolong the network lifetime, increases distances to more CH vehicles connectivity to makes clustering group and changing their pseudonyms in terms of high level privacy and finally, CH nodes use Dijkstra's algorithm use MST among the vehicles nodes depend on existing road networks to follow shortest path selection roads in terms of high connectivity probability of CH and stable structure of the network decreases the topology changes and thus,the clustering overhead is reduced.  相似文献   

19.
Sampath  V.  Karthik  S.  Sabitha  R. 《Wireless Personal Communications》2021,117(4):2955-2971

The seamless data delivery is essential in VANET for application such as autonomous vehicle, intelligent traffic management and for the road safety and emergency applications. The incorporation of named data networking (NDN) with VANET, intended to frame intelligent traffic flow and seamless data delivery. Such integration of vehicular ad hoc networks (VANET) with NDN is termed as vehicular named data networks (VNDN). Because of the continuous node/vehicle mobility, it is a tedious process to build constant and consistent communication between vehicles. With that concern, for enhancing the performance of VNDN and solving the issues such as frequent cluster formation on heavy loaded data transmissions, position-based adaptive clustering model (PACM) is developed. The major intention of PACM is to form clusters based on trajectory. Besides, PACM performs efficient data caching by collecting significant data from vehicles to establish consistent data communication with all nodes in the network. Efficient data caching is done with the elected cluster heads among the framed clusters based on its positions and mobility models. For handling the vehicles at higher mobility speed, mutual data caching process is also designed that makes vehicles to perform on-demand data gathering from cluster heads. Further, the model is simulated and the obtained results are compared with the existing models based on the metrics such as packet delivery ratio, mean delay, cache hit rate and mean hop distance. The comparative analysis shows that the proposed model outperforms the available techniques.

  相似文献   

20.
Vehicular ad hoc network (VANET) is most significant for supporting intelligent transportation system (ITS)-based technologies, but it gets hurdled by sparse distribution of vehicles on highways, and dynamically challenging topology that arises due to increase in traffic. Hence, energy stable and optimized cluster construction maximizes the network lifetime. In this paper, Hybrid Prairie Dogs and Beluga Whale Optimization-based Node Clustering (HPDBWOA-NC) mechanism is proposed with the parameters of highway route, node velocity, number of vehicular nodes, and communication for achieving stable cluster construction in VANETs. It is proposed with the balanced exploration and exploitation potential of Prairie Dog Optimization Algorithm (PDOA) and Beluga Whale Optimization Algorithm (BWOA) for establishing optimal clusters that increase the network stability during the routing process. It integrated the exploration and exploitation capabilities of PDOA and BWOA and confirmed better optimized clusters which confirmed reliable data delivery by preventing the issue of premature convergence. It constructed clusters and selected cluster heads (CHs) depending on the fitness factors of energy, interdistance between vehicles, communication range, and vehicular density. The results of the proposed HPDBWOA-NC generated optimal number of CHs in the network which is comparatively 34.21% better than the benchmarked mechanisms. The mean throughput and packet delivery ratio (PDR) achieved by the proposed HPDBWOA-NC are identified to be significantly improved by 25.48% and 28.91% better than the investigated metaheuristic clustering protocols. The statistical study also guaranteed an increased factor of 81, during the processing of optimizing the clusters during the employment of ITS applications in VANETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号