首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers cooperative non‐orthogonal multiple access (NOMA) scheme in an underlay cognitive radio (CR) network. A single‐cell downlink cooperative NOMA system has been considered for the secondary network, consisting of a base station (BS) and two secondary users, ie, a far user and a near user. The BS employs NOMA signaling to send messages for the two secondary users where the near user is enabled to act as a half‐duplex decode‐and‐forward (DF) relay for the far user. We derive exact expressions for the outage probability experienced by both the users and the outage probability of the secondary system assuming the links to experience independent, nonidentically distributed Rayleigh fading. Further, we analyze the ergodic rates of both the users and the ergodic sum rate of the secondary network. The maximum transmit power constraint of the secondary nodes and the tolerable interference power constraint at the primary receiver are considered for the analysis. Further, the interference caused by the primary transmitter (PT) on the secondary network is also considered for the analysis. The performance of the proposed CR NOMA network has been observed to be significantly better than a CR network that uses conventional orthogonal multiple access (OMA) scheme. The analytical results are validated by extensive simulation studies.  相似文献   

2.
In this paper, a down-link non-orthogonal multiple access (NOMA) system with imperfect successive interference cancellation (SIC) using Energy-Harvesting untrusted relays is investigated. These relaying nodes use in this study use a power-switching architecture to harvest energy from the sources signals and apply an amplify-and-forward protocol to forward the signals. In addition, transmit jamming or artificial noise, is generated by a source node to improve the security of the system and protect confidential source information from untrusted relays. Likewise, three relaying selection strategies are employed to examine the secrecy performance of the proposed system. In order to evaluate the performance evaluation of the proposed system, closed-form expressions of the Secrecy Outage Probability (SOP) are studied over Rayleigh fading channels and a Monte Carlo simulation is used to confirm the analytical results. Furthermore, we study the effects of various parameters, such as power allocation factors, relay node selection, the number of relays, energy harvesting efficiency and the location of relay nodes on the secure outage performances for two users of NOMA system and conventional orthogonal multiple access (OMA). These results show that NOMA offers the better security performance with multiple users.  相似文献   

3.
The simultaneous wireless information and power transfer or energy harvesting (EH) can be combined in nonorthogonal multiple access (NOMA) as green applications towards 5G. This paper investigates a new cooperative EH‐NOMA protocol, where the intermediate relay has not equipped the fixed power source and acts as a wireless powered relay to help signal transmission to representative weak user and strong user in NOMA. However, impacts of imperfect channel estimation contribute to outage system performance evaluations. We formulate the power resource assignment paradigms as two schemes, namely, fixed power allocation and dynamic power allocation, by considering imperfect channel state information (CSI). To solve this problem, we derive the closed‐form expressions of outage probability under imperfect CSI and the power allocation constraints. The expected numerical results related to the derived expressions for the outage probability are examined that numerical and the Monte Carlo simulations are strictly matching lines.  相似文献   

4.
This paper investigates the effect of hardware impairments (HIs) and imperfect channel state information (ICSI) on a SWIPT-assisted adaptive nonorthogonal multiple access (NOMA)/orthogonal multiple access (OMA) system over independent and nonidentical Rayleigh fading channels. In the NOMA mode, the energy-constrained near users act as a relay to improve the performance for the far users. The OMA transmission mode is adopted to avoid a complete outage when NOMA is infeasible. The best user selection scheme is considered to maximize the energy harvested and avoid error propagation. To characterize the performance of the proposed systems, closed-form and asymptotic expressions of the outage probability for both near and far users are studied. Moreover, exact and approximate expressions of the ergodic rate for near and far users are investigated. Simulation results are provided to verify our theoretical analysis and confirm the superiority of the proposed NOMA/OMA scheme in comparison with the conventional NOMA and OMA protocol with/without HIs and ICSI.  相似文献   

5.
This paper analyzes the performance of a cooperative nonorthogonal multiple access (NOMA) in an underlay cognitive radio network aided by an energy harvesting relay. A secondary source transmits signal for two users, where a near user acts as a relay for the far user. The far user applies the selection combining (SC) approach on the signals which were relayed by the near user and received via direct path from the secondary source. We analytically derive the outage probability (OP) of each user separately, the overall system OP, and the throughput of the system. The impact of the power allocation coefficient of NOMA and energy harvesting parameters on outage is indicated. Further, the performance of the network is investigated with imperfection in successive interference cancellation (SIC), maximal ratio combining (MRC) at relay, and Nakagami-m fading. The results derived analytically are supported by simulation in MATLAB.  相似文献   

6.

In this paper, device to device (D2D) network is studied to support transmission in close distance among group of two users. Such two users benefit from new technique of multiple access, namely non-orthogonal multiple access. Two modes of D2D are considered, such as direct and relay links. Energy harvesting and design of multiple antennas have main impacts on system performance. We derive the closed-form expressions of outage probability for two devices in many scenarios. The Decode and Forward relaying scheme is adopted in this study. To ensure the quality of service (QoS) for the devices, suitable mode can be decided based on specific demand. We compare system performance by varying main parameters such as power allocation factors or transmit signal to noise ratio. Numerical results are performed to verify the effectiveness of the proposed D2D transmission strategies.

  相似文献   

7.
银泽正  杨震  冯友宏 《信号处理》2021,37(5):747-756
针对实际场景中存在的具有上下行双向传输任务的通信系统,本文提出了一种双向中继协作非正交多址接入(NOMA, non-orthogonal multiple access)传输方案,基于解码转发(DF, Decode and Forward)协议研究信号的上行和下行双向传输技术,与现有NOMA方案不同,本方案为近端用户分配较大的功率,利用网络编码(NC, network coding)原理在两个时隙内实现基站和用户之间的双向信息交换。进一步考虑不完美信道状态信息(CSI, Channel State Information)条件,分析系统的传输性能并推导了系统中断概率以及遍历和速率闭合表达式。仿真结果表明,在完美CSI和不完美CSI条件下,相比于现有文献所提方案、单向中继(OWR,One-Way Relay)和正交多址(OMA, Orthogonal Multiple Access)网络,本文所提方案有效降低了系统的传输中断概率,提高了系统的遍历和速率以及系统吞吐量。   相似文献   

8.
In order to provide privacy provisioning for the secondary information,we propose an energy harvesting based secure transmission scheme for the cognitive multi-relay networks.In the proposed scheme,two secondary relays harvest energy to power the secondary transmitter and assist the secondary secure transmission without interfere the secondary transmission.Specifically,the proposed secure transmission policy is implemented into two phases.In the first phase,the secondary transmitter transmits the secrecy information and jamming signal through the power split method.After harvesting energy from a fraction of received radio-frequency signals,one secondary relay adopts the amplify-and-forward relay protocol to assist the secondary secure transmission and the other secondary relay just forwards the new designed jamming signal to protect the secondary privacy information and degrade the jamming interference at the secondary receiver.For the proposed scheme,we first analyze the average secrecy rate,the secondary secrecy outage probability,and the ergodic secrecy rate,and derive their closed-form expressions.Following the above results,we optimally allocate the transmission power such that the secrecy rate is maximized under the secrecy outage probability constraint.For the optimization problem,an AI based simulated annealing algorithm is proposed to allocate the transmit power.Numerical results are presented to validate the performance analytical results and show the performance superiority of the proposed scheme in terms of the average secrecy rate.  相似文献   

9.
Non-orthogonal multiple (NOMA) access using successive interference cancellation and cognitive radio are two promising techniques for enhancing the spectrum efficiency and utilization for future wireless communication systems. This paper presents a NOMA-based cooperative hybrid spectrum sharing protocol for cognitive radio networks. A two phase decode-and- forward (DF) relaying scheme in a multi-relay scenario is considered. Each secondary transmitter is grouped into one of the two clusters: a non-cooperative cluster (NCC) and a cooperative cluster (CC). The cluster head (CH) of the CC working as the best DF relay for the primary system is permitted to transmit its own signal superimposed on the primary signal using a NOMA approach in exchange for cooperation. On the other hand, the CH of the NCC transmits in parallel with the primary system satisfying a predefined peak transmit power and peak interference power constraints that guarantee a given primary quality of the service requirement. It is demonstrated that the performances of both the primary and secondary systems increase with the increasing number of secondary nodes. The simulation and theoretical results affirm the efficacy of the proposed protocol compared to the traditional overlay and underlay models in terms of the outage probability and the ergodic capacity.  相似文献   

10.
In this paper, we propose an energy‐efficient power control and harvesting time scheduling scheme for resource allocation of the subchannels in a nonorthogonal multiple access (NOMA)–based device‐to‐device (D2D) communications in cellular networks. In these networks, D2D users can communicate by sharing the radio resources assigned to cellular users (CUs). Device‐to‐device users harvest energy from the base station (BS) in the downlink and transmit information to their receivers. Using NOMA, more than one user can access the same frequency‐time resource simultaneously, and the signals of the multiusers can be separated successfully using successive interference cancellation (SIC). In fact, NOMA, unlike orthogonal multiple access (OMA) methods, allows sharing the same frequency resources at the same time by implementing adaptive power allocation. Our aim is to maximize the energy efficiency of the D2D pairs, which is the ratio of the achievable throughput of the D2D pairs to their energy consumption by allocating the proper subchannel of each cell to each device user equipment (DUE), managing their transmission power, and setting the harvesting and transmission time. The constraints of the problem are the quality of service of the CUs, minimum required throughput of the subchannels, and energy harvesting of DUEs. We formulate the problem and propose a low‐complexity iterative algorithm on the basis of the convex optimization method and Karush‐Kuhn‐Tucker conditions to obtain the optimal solution of the problem. Simulation results validate the performance of our proposed algorithm for different values of the system parameters.  相似文献   

11.
Cognitive nonorthogonal multiple access (NOMA) technique allows multiple users to share the same time and same frequency resources to fulfil the reliability and spectral efficiency requirements of 5G communication standards. In this paper, simultaneous wireless information and power transfer (SWIPT)–based full‐duplex cognitive NOMA downlink system is proposed. In this system, secondary source (SS) serves as a relay to far primary user as there is no direct link from the primary source. NOMA technique is used at SS to transmit information to far primary user and secondary user. The time switching mechanism is adopted at SS for harvesting energy and information decoding. Analytical closed‐form expressions are derived for the outage probabilities of both primary and secondary users. Outage analysis is carried out in Nakagami‐ fading environment in the presence of self‐interference at SS. In addition to that, the optimal harvesting time to maximize the instantaneous throughput of the far primary user is also derived. Numerical results are plotted to validate the derived expressions. It is inferred that the outage probability of the proposed system depends on the fading environment, harvesting parameters, and self‐interference at SS.  相似文献   

12.

In this paper, we derive and optimize the total throughput of non orthogonal multiple access (NOMA) with energy harvesting. The source S harvests energy from radio frequency signal received from node A. The source uses the harvested energy to transmit data to N NOMA users classified using instantaneous or average power of channel gains. We optimize the powers allocated to NOMA users and harvesting duration to maximize the total throughput. We also derive packet waiting time and total delays for all NOMA users. We optimize powers allocated to NOMA users and harvesting duration to minimize a combination of total delays of all users. Our results are valid for Nakagami channels with arbitrary positions of users.

  相似文献   

13.
祖婉婉  杨震 《信号处理》2019,35(2):217-224
为了增强非正交多址接入技术(NOMA, non-orthogonal multiple access)应用场景的广泛性,本文给出了一个针对动态用户的上行NOMA系统。在传统的NOMA系统中,基站将用户到基站间的具体距离反馈给用户。由于在本文的场景中用户是动态分布的,基站实时地反馈具体距离势必会使系统开销过大。为了减少系统开销,本文假定基站只向用户反馈距离的统计特性,用户在之后的信息传输中根据距离的统计特性确定发射功率。理论分析了动态用户的中断性能并推导出了中断概率的表达式。仿真验证了理论推导的正确性,表明了当用户的分布区域内外边界值相差不大时,利用距离的统计特性和利用具体距离确定发射功率可以获得几乎相同的中断性能。   相似文献   

14.
针对采用无线携能传输(SWIPT)的多中继协作底层认知NOMA网络,提出一种基于NOMA和串行干扰消除协议的两阶段中继选择策略(TSRS).在保护主用户的干扰温度限约束下,次级网络源节点和最优中继均以固定功率分配生成多用户叠加信号向下一跳链路发送,最优中继采用功率分割方案采集能量,只利用从第一跳链路采集到的能量提供解码...  相似文献   

15.
This paper assumes two users and a two‐way relay network with the combination of 2×2 multi‐input multi‐output (MIMO) and nonorthogonal multiple access (NOMA). To achieve network reliability without sacrificing network throughput, network‐coded MIMO‐NOMA schemes with convolutional, Reed‐Solomon (RS), and turbo codes are applied. Messages from two users at the relay node are network‐coded and combined in NOMA scheme. Interleaved differential encoding with redundancy (R‐RIDE) scheme is proposed together with MIMO‐NOMA system. Quadrature phase‐shift keying (QPSK) modulation technique is used. Bit error rate (BER) versus signal‐to‐noise ratio (SNR) (dB) and average mutual information (AMI) (bps/Hz) versus SNR (dB) in NOMA and MIMO‐NOMA schemes are evaluated and presented. From the simulated results, the combination of MIMO‐NOMA system with the proposed R‐RIDE‐Turbo network‐coded scheme in two‐way relay networks has better BER and higher AMI performance than conventional coded NOMA system. Furthermore, R‐RIDE‐Turbo scheme in MIMO‐NOMA system outperforms the other coded schemes in both MIMO‐NOMA and NOMA systems.  相似文献   

16.
In this paper, we investigate the secrecy performance of a cooperative cognitive radio network (CCRN) considering a single energy harvesting (EH) half‐duplex amplify and forward (AF) relay and an eavesdropper (EAV). Power is allocated to each node under cognitive constraints. Because of the absence of a direct wireless link, secondary source (SS) communicates with secondary destination (SD) in two time slots. The SD and the SS broadcast jamming signal to confuse the EAV in the first and in the second time slots, respectively. The relay harvests energy in the first time slot and amplifies and forwards the signal to SD in the second time slot. The EAV employs maximal ratio combining scheme to extract the information. We evaluate the performance in terms of secrecy outage probability (SOP) of the proposed CCRN. The approximate expression of SOP is obtained in integration form. Improvement in SOP is expected for the proposed CCRN because of the use of jamming signals. The secrecy performance of CCRN improves with increase in primary transmit power, peak transmit power of secondary nodes, channel mean power, and energy conversion efficiency but degrades with increase in threshold outage rate of primary receiver and threshold secrecy rate. A MATLAB‐based simulation framework has been developed to validate the analytical work.  相似文献   

17.
This paper considers a cognitive radio–assisted wireless information and power transfer system consisting of multipair of transceiver in primary network and 2‐hop relaying link in secondary network. In this investigation, a decoded‐and‐forward–assisted relay node and power splitting protocol are deployed to obtain ability of wireless energy transfer. The relay node harvests energy from the radio frequency signals of the secondary transmitter and primary transmitters in data transmission to the destination by reusing the licensed spectrum resource. We propose 2 policies for wireless power transfer at the relay, namely, (1) multisource power transfer and (2) single‐source power transfer. To evaluate performance under energy harvesting regime, we derive the closed‐form outage probability expressions and achievable throughput of the secondary network in delay‐limited transmission mode. In addition, we investigate the impact of various system parameters including number of primary transceivers, primary outage threshold, and position arrangement of nodes in primary transceivers on the outage performance of the proposed scheme. Furthermore, we evaluate the system energy efficiency to show trade‐off metric of energy consumption and throughput. Performance results are presented to validate our theoretical derivation and illustrate the impacts of various system parameters. An important result is that the secondary network is more beneficial than harmful from the primary interference under power constraint and reasonable node location arrangement.  相似文献   

18.
Non-orthogonal multiple access (NOMA) is expected to be a promising multiple access techniques for 5G networks due to its superior spectral efficiency (SE). Previous research mainly focus on the design to improve the SE performance with instantaneous channel state information (CSI). In this paper, we consider the fading MIMO channels with only statistical CSI at the transmitter, and explore the potential gains of MIMO NOMA scheme in terms of both ergodic capacity and energy efficiency (EE). The ergodic capacity maximization problem is first studied for the fading multiple-input multiple-output (MIMO) NOMA systems. We derive the optimal input covariance structure and propose both optimal and low complexity suboptimal power allocation schemes to maximize the ergodic capacity of MIMO NOMA system. For the EE maximization, the optimization problem is formulated to maximize the system EE (defined by ergodic capacity under unit power consumption) under the total transmit power constraint and the minimum rate constraint of the weak user. By transforming the EE maximization problem into an equivalent one-dimensional optimization problem, the optimal power allocation for EE design is proposed. To further reduce the computation complexity, a near-optimal solution based on golden section search and suboptimal closed form solution are proposed as well. Numerical results show that the proposed NOMA schemes significantly outperform the traditional orthogonal multiple access scheme with traditional orthogonal multiple access transmission in terms of both SE and EE.  相似文献   

19.
In this paper, a fixed‐gain amplify‐and‐forward relaying under non‐ideal hardware is analyzed. The relaying system is impaired because of relay's power amplifier (PA) nonlinearity and in‐phase and quadrature‐phase (IQ) imbalance at a destination. Closed‐form expressions for outage probability as well as ergodic capacity approximation and its upper bound are derived. Also, the outage probability and the ergodic capacity asymptotic expressions in the high signal‐to‐noise ratio are deduced. For the first time, the joint influence of PA nonlinearity and IQ imbalance on the system in terms of outage probability, symbol error rate, and ergodic capacity is investigated. The results are compared with the respect to soft envelope limiter and traveling‐wave tube amplifier at the relay. Based on the analytical and the numerical results, important insights into the impact of IQ imbalance and nonlinearity of the aforementioned PA models on the system performance are gained as well as valuable information on the performance of practically deployed fixed‐gain amplify‐and‐forward relaying system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we investigate energy harvesting decode-and-forward relaying non-orthogonal multiple access (NOMA) networks. We study two cases of single relay and multiple relays with partial relay selection strategy. Specifically, one source node wishes to transmit two symbols to two respective destinations directly and via the help of one selected intermediate energy constraint relay node, and the NOMA technique is applied in the transmission of both hops (from source to relay and from relay to destinations). For performance evaluation, we derive the closed-form expressions for the outage probability (OP) at D 1 and D 2 with both cases of single and multiple relays. Our analysis is substantiated via Monte Carlo simulation. The effect of several parameters, such as power allocation factors in both transmissions in two hops, power splitting ratio, energy harvesting efficiency, and the location of relay nodes to the outage performances at the two destinations is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号