首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
胡翔  张林  唐泉  李伟  廖海东  庞爱民 《含能材料》2018,26(7):550-556
为研究铝粉粒度和含量对NEPE推进剂燃烧产物颗粒阻尼的影响,采用密闭弹燃烧法收集了NEPE推进剂的凝相燃烧产物并开展粒度分析,根据Culick线性颗粒阻尼理论计算了燃烧产物对声不稳定燃烧的颗粒阻尼。结果表明,铝粉的粒度和含量均显著影响NEPE推进剂燃烧产物对声不稳定燃烧的颗粒阻尼,主要是由于铝粉粒度和含量影响了凝相燃烧产物的粒度分布。对一定频率声不稳定燃烧,凝相燃烧产物中粒径处于[1/2D_(opt),2D_(opt)](D_(opt)为最佳颗粒粒径)区间的颗粒质量分数越高,燃烧产物的颗粒阻尼效率系数越大,产生的颗粒阻尼越大。燃烧产物中凝相燃烧产物的质量分数是决定颗粒阻尼大小的因素之一,与推进剂中铝粉含量呈正相关。  相似文献   

2.
设计并制备了含N?脒基脲二硝酰胺盐(GUDN)和二硝酰胺铵(ADN)的硝酸酯增塑聚醚(NEPE)固体推进剂样品,测试了推进剂的燃烧性能(燃速和压强指数)、燃烧火焰结构和燃烧波温度分布,并与不含GUDN和ADN的推进剂性能进行对比。结果表明,GUDN/ADN双氧化剂对NEPE推进剂的燃烧性能有明显的影响,推进剂配方中添加ADN可提高推进剂的燃速和压强指数,含15%、20%和22.5%的ADN替换高氯酸铵(AP)可使推进剂在7.0MPa下的燃速提高25.30%、36.76%和47.69%,GUDN使推进剂在7.0 MPa下的燃速降低18.97%,而压强指数在1~15 MPa提高12.04%,而且在不同压力下含双氧化剂的NEPE推进剂的燃烧火焰结构呈多火焰结构,而且火焰的亮度随着压强的增大而变亮。  相似文献   

3.
为研究硝酸酯增塑聚醚(NEPE)推进剂药柱固化与降温过程中残余应力/应变的形成机制,基于ABAQUS有限元软件对推进剂在固化与降温过程中的温度场、固化度场和应力/应变场进行数值分析。结果表明,NEPE推进剂药柱在50 ℃高温固化过程中,药柱内部存在温度梯度与固化速率梯度,药柱截面中心位置温度与固化速率较高,但在固化完成时内部固化度趋于一致,药柱内部的温差不会影响药柱最终的残余应力和残余应变;NEPE推进剂药柱在固化与降温2个阶段中,总残余应力/应变基本符合应力/应变叠加原理,药柱的残余应力/应变主要由固化收缩应力/应变与降温过程产生热应力/应变构成,总残余应力在这两阶段占比分别约为20%与80%,总残余应变占比分别约为30%与70%;本方法获得的残余应力/应变与传统采用温度折算方法计算结果分布趋势基本一致,但计算结果整体偏小。  相似文献   

4.
设计并制备了含N?脒基脲二硝酰胺盐(GUDN)和二硝酰胺铵(ADN)的硝酸酯增塑聚醚( NEPE)固体推进剂样品,测试了推进剂的燃烧性能(燃速和压强指数)、燃烧火焰结构和燃烧波温度分布,并与不含GUDN和ADN的推进剂性能进行对比。结果表明,GUDN/ADN 双氧化剂对NEPE推进剂的燃烧性能有明显的影响,推进剂配方中添加ADN可提高推进剂的燃速和压强指数,含15%、20%和22.5%的ADN替换高氯酸铵(AP)可使推进剂在7.0MPa 下的燃速提高25.30%、36.76%和47.69%,GUDN使推进剂在7.0MPa下的燃速降低18.97% ,而压强指数在1~15MPa提高12.04%,而且在不同压力下含双氧化剂的NEPE推进剂的燃烧火焰结构呈多火焰结构,而且火焰的亮度随着压强的增大而变亮。  相似文献   

5.
为探究含能钝感增塑剂三羟甲基乙烷三硝酸酯(TMETN)在硝酸酯增塑聚醚(NEPE)推进剂黏合剂中的扩散性能,采用分子模拟(MD)法比较了硝化甘油(NG)、1,2,4-丁三醇三硝酸酯(BTTN)及TMETN在聚乙二醇/固化剂(PEG/N-100)中的扩散系数、分析了扩散机理,并讨论了温度及增塑比对TMETN扩散性能的影响。结果表明:增塑剂扩散系数的大小顺序为NGBTTNTMETN,这说明TMETN的扩散能力较弱;从微观角度分析扩散的机理为:增塑剂与预聚体的分子间相互作用越强、体系的自由体积分数越小、增塑剂分子的尺寸越大,则增塑剂越难发生扩散;在三种增塑体系中,TMETN与PEG/N-100的结合能力最强、原子间氢键作用最强、该体系中PEG/N-100的自聚集能力最弱,且TMETN分子尺寸最大,故而TMETN最难发生扩散;随着温度升高,TMETN扩散系数的增加先缓慢后剧烈,这与高温加速老化的规律保持一致,分析温度对扩散机理的影响为:高温使原子间氢键作用峰值减小、位置后移,即增塑剂与黏合剂的相互作用减弱,并且体系的自由体积分数也变大;随着增塑比的增加(2.5、2.8、3),TMETN扩散系数减小,介观研究表明体系的相容性变好是其中的原因之一。  相似文献   

6.
基于湿热加速老化试验的HTPB固体推进剂寿命预估   总被引:1,自引:0,他引:1  
借鉴量子力学理论关于电子产品老化反应速率与环境温、湿度的关系,将Eyring和Arrhenius模型相结合,建立了固体推进剂贮存使用寿命的湿热老化模型,并通过试验数据拟合得到具体的经验公式。利用该模型预估出某HTPB固体推剂在室温20℃、相对湿度为50%的贮存寿命,与实际贮存寿命进行了对照。结果表明,采用将温湿因素引入推进剂老化模型的方法,可以使推进剂寿命预测的结果更接近于发动机中推进剂的实际使用寿命。  相似文献   

7.
研究了推进剂贮存老化寿命计算及可靠性评定问题。首先由反应论模型计算得到不同评定参数下的寿命数据;然后采用三参数威布尔分布估计方法对寿命数据进行了概率拟合;最后讨论了利用混合威布尔分布参数估计方法研究寿命数据概率分布拟合方法的问题。  相似文献   

8.
NEPE推进剂/衬层/绝热层界面迁移组分定量分析   总被引:4,自引:3,他引:1  
应用高效液相色谱(HPLC)、气相色谱(GC)对含硝酸酯的聚醚(NEPE)推进剂/端羟基聚丁二烯(HTPB)衬层/三元乙丙橡胶(EPDM)绝热层Φ25圆柱标准粘接试件粘结界面主要迁移组分进行了定量分析研究。研究结果表明,HPLC适合于同时测定粘接界面主要迁移组分增塑剂硝化甘油(NG)、丁三醇三硝酸酯(BTTN)、功能助剂AD;GC法适合于测定增塑剂癸二酸二辛酯(DOS)。采用建立的相应方法测定衬层中这四个组分,结果变异系数小于6%,样品回收率大于90%,测定方法准确度和精密度可满足一般测定要求。样品测定结果表明,推进剂中的NG、BTTN、AD可向衬层和绝热层迁移,其中衬层中含量较高,AD比NG、BTTN迁移更为明显,且AD易在衬层富聚。衬层中的DOS则只向绝热层迁移,不向推进剂迁移。  相似文献   

9.
杜永强  郑坚  彭威  张晓  顾志旭 《含能材料》2016,24(10):936-940
针对常用老化模型不能准确描述端羟基聚丁二烯(HTPB)推进剂贮存老化不同阶段特点的问题,提出了一种分段老化模型。对HTPB推进剂进行了高温加速寿命试验,以最大延伸率作为性能变化表征参数,将HTPB推进剂的老化机理分三个阶段进行了分析,并根据老化不同阶段的相关性分析结果,建立了分段老化模型。利用时温等效原理,得到了高温(60℃)加速老化和常温(25℃)有效贮存的时间转换关系,结合分段老化模型,预估HTPB推进剂在常温(25℃)条件下贮存寿命为11.60年。该模型的相关系数R0.95,标准差R_(std)0.015。  相似文献   

10.
新型高燃速改性双基推进剂由于配方中含有较多的硝化甘油和新型的燃烧催化剂,其化学安定性比一般双基推进剂安定性差一些,特别是试验温度较高时,这种差别更为明显,但是在100℃左右的温度下,其试验结果与171火药相似,本文通过采用不同的方法对这种推进剂的安定性进行了测试,预估这种新型的改性双基推进剂的安全贮存寿命可达15年以上.  相似文献   

11.
NEPE推进剂易碎性研究   总被引:1,自引:1,他引:0  
为了研究NEPE推进剂的易碎性,利用撞击破碎模拟试验装置将NEPE推进剂以不同速度撞靶,将撞靶后不同损伤程度的NEPE推进剂进行密闭爆发器试验,分析NEPE推进剂在不同破碎程度条件下的燃烧特性。结果表明,NEPE推进剂的最大压力随时间变化率、燃速伴随着破碎程度的增加而增加,当撞击速度大于192 m.s-1时可能发生燃烧转爆轰。  相似文献   

12.
为了研究NEPE推进剂的点火燃烧特性,搭建了CO2激光点火试验平台,使用高速摄影仪拍摄在不同气体环境下NEPE推进剂的燃烧过程,通过信号采集系统测量NEPE推进剂的点火延迟时间,对NEPE推进剂在0.1~3.0 MPa氮气及空气中的点火燃烧特性进行了研究。结果表明,环境压强和环境气体会影响NEPE推进剂的点火燃烧过程,环境压强越大,NEPE推进剂燃烧越激烈,且NEPE推进剂在空气中燃烧时比氮气中更加剧烈。NEPE推进剂的点火延迟时间随着环境压强的增大而减小,当环境压强从0.1 MPa增大到3.0 MPa时,氮气中的点火延迟时间由0.51 s减小到0.29 s,而空气中的点火延迟时间由0.32 s减小到0.18 s,但是当环境压强大于0.5 MPa时,环境压强对点火延迟时间的影响显著降低。同时环境压强会影响NEPE推进剂的燃烧速率,当环境压强从0.1 MPa增加到3.0 MPa时,氮气中的燃速从1.71 mm·s-1提高到4.54 mm·s-1,空气中的燃速从2.51 mm·s-1提高到11.4 mm·s-1,NEPE推进剂在空气中的燃烧速率增长幅度更大。最后通过燃速经验公式进行拟合,表明Vielle燃速公式更适用于表征NEPE推进剂在0.1~3.0 MPa下的燃速特性。  相似文献   

13.
为研究铝基微单元燃料在硝酸酯增塑聚醚(NEPE)固体推进剂中的应用性能,以自制的铝基微单元复合燃料(Al@AP)代替铝粉加入NEPE固体推进剂,以真空定容爆热试验、发动机试验、残渣活性铝测试、高速摄影、单向拉伸试验、工艺性能测试等手段研究了Al@AP对NEPE固体推进剂燃烧、力学、工艺等性能的影响;并对Al@AP在NEPE固体推进剂中的燃烧作用机理进行了分析。结果表明,以19.5%的Al@AP代替FLQT-3 Al后,NEPE固体推进剂的爆热由6039.4 J·g-1提升至6924.8 J·g-1,残渣量由28.91 g降至7.64 g,残渣活性铝含量由14.64%降至0.37%,残渣粒径d50由94.12 μm降至24.21 μm,NEPE固体推进剂喷射效率提升,铝粉在燃面停留时间由55 ms缩短至40 ms,且无明显融联团聚现象,且Al@AP对推进剂的燃速、力学、工艺等性能基本无影响。  相似文献   

14.
利用TG和DSC研究了含六硝基六氮杂异伍兹烷(HNIW)的NEPE推进剂的热分解特性。结果表明,用HNIW取代推进剂中RDX的50%,使硝酸酯在80~145℃的挥发失重比例减小;同时,在145~240℃时RDX和HNIW相互作用,同时发生分解反应,表现出大量的放热。当HNIW完全取代RDX后,分解反应在145~240℃分为两个阶段,即硝酸酯分解失重和部分HNIW分解失重,说明HNIW受硝酸酯放热分解的影响,其分解温度提前。  相似文献   

15.
NEPE固体推进剂粘-超弹性本构模型研究   总被引:3,自引:1,他引:3  
为了准确描述NEPE固体推进剂在有限变形下的力学特性,本文针对NEPE推进剂在有限变形下的粘 超弹本构模型进行研究。模型由超弹部分与粘弹部分并联构成:超弹部分采用Yeoh模型,粘弹部分采用非线性粘弹性本构模型。进行NEPE推进剂单轴拉伸试验及拉伸松弛试验,并用试验结果拟合超弹及粘弹两部分的材料参数。所建本构模型与实验结果进行了对比,模型能较好的预测30%应变内的NEPE推进剂的力学性能。  相似文献   

16.
以CL-20、AP、Al粉和燃烧催化剂逐项添加的方式设计了递进配方[NB(PEG/NG/N-100/C2),NB/CL-20,NB/CL-20/AP,NB/CL-20/AP/Al,NB/CL-20/AP/Al/Ct],研究了含CL-20的NEPE推进剂的燃速特性及CL-20、AP、Al粉和燃烧催化剂对推进剂燃烧性能的影响,并与含RDX的NEPE推进剂的燃烧性能进行了比较。实验结果表明:CL-20取代RDX-NEPE推进剂中的RDX可使推进剂燃速大幅提高,但含CL-20的NEPE推进剂的压力指数高于含RDX的NEPE推进剂,且难以降低;AP质量百分含量为70%的NEPE推进剂NAP的燃速在4~10MPa范围内呈现一平台。将AP加入到含RDX的NEPE推进剂中和含CL-20的NEPE推进剂中能改善推进剂的氧系数,提高燃速,降低压力指数;高燃烧热的Al粉部分取代CL-20,在提高含CL-20的NEPE推进剂的燃速上,具有与CL-20相同的效果;催化剂PbCO3与Pb(NTO)2.H2O降低了含CL-20的NEPE推进剂的压力指数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号