首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Eu2+-doped K2 Mg Si3O8 phosphors were synthesized by conventional solid-state reaction method. The phase formation of as-prepared samples was characterized by X-ray powder diffraction. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve and CIE coordinates. The phosphor showed bluish-green emission centered at 460 nm under the excitation of UV and near UV light with the wavelength range of 250–430 nm. Two Eu2+ emission centers existed in the K2 Mg Si3O8:Eu2+ phosphor according to the luminescence spectra and the decay curves. The critical quenching concentration of Eu2+ doping was determined to be 3.0 mol.% and the concentration quenching mechanism was dipole-dipole interactions between Eu2+ ions. These results suggested that K2 Mg Si3O8:Eu2+ was a potential bluish-green phosphor candidate for white UV-LED.  相似文献   

2.
Eu-doped transparent oxyfluoride borosilicate glass ceramics containing Ba2GdF7 nanocrystals were prepared by controlling crys-tallization of melt-quenched glass fabricated under a reductive atmosphere.In the oxyfluoride borosilicate glass ceramics,the mean crystal size of Ba2GdF7 nanocrystals was about 30 nm,which could be observed by X-ray diffraction(XRD) and transmission electron microscopy analysis.The photoluminescence spectra of the samples excited at 392 nm showed that,besides the characteristic sharp emissions of Eu3+ ions,a very intense broadband emission of Eu2+ ions centered at 450 nm appeared.The photoluminescence intensity of Eu3+ and Eu2+ ions in the glass ceramics was much stronger than that in the as-made precursor.The long decay lifetimes of Eu3+ and Eu2+ ions evidenced the partitions of Eu3+ and Eu2+ ions into the Ba2GdF7 nanocrystals.The energy transfer from Gd3+ ions to Eu3+ and Eu2+ ions was confirmed by the excita-tion and emission spectra.  相似文献   

3.
A barium-phosphate glass matrix was co-doped with Sn O and Eu2O3 for investigating on material luminescent properties. Optical absorption and X-ray photoelectron spectroscopy(XPS) were employed in the characterization of tin species. The prevalence of divalent tin was indicated by the XPS data in accord with a conspicuous absorption band detected around 285 nm ascribed to twofold-coordinated Sn centers(isoelectronic with Sn2+). Photoluminescence(PL) excitation spectra obtained by monitoring Eu3+ emission from the 5D0 state revealed a broad excitation band from about 250 to 340 nm, characteristic of donor/acceptor energy transfer. Under excitation of such at 290 nm, the co-doped material exhibited a bright whitish luminescence, and a four-fold enhanced Eu3+ emission relative to a purely Eu-doped reference. Time-resolved PL spectra recorded under the excitation at 290 nm exposed a broad band characteristic of the twofold-coordinated Sn centers and emission bands of Eu3+ ions, which appeared well separated in time in accord with their emission decay dynamics. The data suggested that light absorption took place at the Sn centers(donors) followed by energy transfer to Eu3+ ions(acceptors) which resulted in populating the 5D0 emitting state. Energy transfer pathways likely resulting in the enhanced Eu3+ photoluminescence and the consequential light emission were discussed.  相似文献   

4.
Eu3+ and Ho3+ doped Sr2TiO4 were synthesized by using solid-state reactions. Samples sintered at 1300 oC for 6 h could be indexed to Sr2TiO4 with a single phase. Eu3+ in Sr2TiO4 emitted orange light under the excitation at 365 nm in a broad band which was coupled well with the strongest emission of high pressure mercury vapor lamps. Ho3+ in Sr2TiO4 emitted yellow light under blue excitation from 450 to 460 nm which agreed well with the emission of blue InGaN-based light-emitting diodes. The present results indicated that Sr2TiO4 was a promising host for high pressure mercury vapor lamps or white light-emitting diodes.  相似文献   

5.
A new aluminate host material Ca3ZnAl4O10 doped with Eu2+ was prepared by a high-temperature solid-state reaction method, and a pure crystalline phase of Ca3ZnAl4O10 was confirmed with X-ray powder diffraction (XRD) measurement. The luminescent property was investigated with excitation and emission spectra. The phosphor could be excited by UV light from 220 nm to 400 nm and emitted a blue luminescence peaked at 450 nm, which corresponded to the 4f65d1→4f7 transition of Eu2+ ions. The dependence of luminesce...  相似文献   

6.
A novel orange phosphor Eu3+ doped barium zirconate(BaZrO3) was synthesized by conventional solid state reaction method and its crystal structure and luminescent properties were investigated in this paper.The X-ray diffraction patterns(XRD) showed that simple BaZrO3 phase was obtained.Monitoring at 596 nm,the excitation spectrum consisted of a broad band and a series of narrow bands and the stronger excitation peaks located at 275 and 393 nm,respectively.The emission spectrum excited by 393 nm UV light was composed of four narrow bands.The strongest emission was located at 596 nm.The appropriate concentration of Eu3+ was 0.025(molar fraction) for the highest emission intensity at 596 nm.The H3BO3 and ammonium were added as flux and the results showed that 2 wt.% NH4F ions was the optimal flux for BaZrO3:Eu3+.  相似文献   

7.
A novel red phosphor Ca2GeO4:Eu3+ was prepared by the traditional solid state reaction. X-ray powder diffraction (XRD) analysis suggested that there was no impurity phase. The study on the diffusion reflection spectra of the undoped and Eu3+ doped Ca2GeO4 phosphors revealed an absorption band superposed of that of the host material and the Eu3+ ions. And the excitation spectrum presented a dominating broad band at 250–300 nm which was attributed to both the host material absorption and the charge transfer band (CTB) of the Eu3+ ions. The investigation on the excitation and diffusion spectra showed that there was an effective energy transfer from the host material to the Eu3+ ions. This was favorable to the red emission of the phosphor. Photoluminescence measurements indicated that the phosphor presents bright red emission at 611 nm under UV excitation. In addition, the Al3+ or Li+ codoping enhanced the red emission from Ca2GeO4:Eu3+ by about 3 and 2 times respectively under UV excitation.  相似文献   

8.
Oxyfluoride borosilicate glass with the molar composition of 60SiO2-15B2O3-15Na2O-8CaF2-2NaF-0.25Eu2O3 was synthesized by a traditional glass melting method. Glass ceramics containing CaF2 nanocrystals were prepared by heat treating the glass samples at a tem-perature in the range of 620-680 °C. The results of X-ray diffraction (XRD) indicated that the average crystallite size and the lattice constant of CaF2 nanocrystals increased with the heat treatment temperature increasing. The luminescence spectra showed that the emission intensity of Eu3+ doped glass ceramics was stronger than that of the glass matrix, and increased with the heat treatment temperature increasing. The left edge of excitation band shifted to shorter wavelength in the glass ceramics. The local environments of Eu3+ ions in the glass and glass ceram-ics were different.  相似文献   

9.
A convenient high temperature solid-state reaction method was developed to fabricate Na1-xAl1-xSi1+xO4:Eu2+ phosphors.The as-prepared products were characterized by X-ray diffraction(XRD),photoluminescence(PL),and photoluminescence excitation(PLE).The luminescence of Na1-xAl1-xSi1+xO4:Eu2+ phosphors were characterized by the two corresponding emission centers at 535 and 440 nm.The excitation spectrum extended from 250 to 400 nm.A white light was observed by naked eye upon ultraviolet excitation.The relative...  相似文献   

10.
Luminescence of Er^3+ in Oxyfluoride Transparent Glass-Ceramics   总被引:1,自引:0,他引:1  
Erbium doped silicate, germanate, and tellurium-germanate oxyfluoride glasses were prepared in a bulk form. Through appropriate heat treatment of the as-prepared glasses, transparent glass-ceramics (TGCs) were obtained with the formation of β-PbF2∶Er3 nanocrystals in the glass matrix were confirmed by X-ray diffraction. Well-defined diffraction peaks were observed in the samples after heat-treatment. The average crystal diameter of these precipitated crystals from full-width at half-maximum (FWHM) of the diffraction peak was estimated to be between 8 and 13 nm. Optical absorption, photoluminescence, and upconversion luminescence were measured on as-prepared glass and glass-ceramics. Luminescence spectra in the TGC samples revealed well-resolved, sharp stark-splitting peaks, which indicates that a majority of Er3 ions has been incorporated into the crystalline phase of the nanocrystals. The intensity of the visible and near infrared luminescence mostly increases in TSG compared to that in the as-prepared glass. In 1.53 μm absorption and emission bands, the maximum absorption peak is blue-shifted from 1531 to 1507 nm, whereas the maximum emission peak is red-shifted from 1535 to 1543 nm in TGC, as compared with that in glass. The bandwidth at half-maximum (BWHM) of the emission band is significantly broader in TGC than in glass, which is beneficial to the erbium-doped fiber amplifier (EDFA). Upconversion luminescence was measured using 800 nm near-infrared light excitation. Drastically increased upconversion luminescence was observed from the TGC as compared to that from their corresponding as-prepared glasses. In addition to a strong green emission centered at 545 nm because of 4S3/2→4I15/2 transition and a weaker red emission centered at 662 nm because of 4F9/2→4I15/2 transition, generally seen from the Er3 doped glasses, two violet emissions centered at 410 nm because of 2H9/2→4I15/2 transition and centered at 379 nm because of 4G11/2→4I15/2 transition were also observed from the TGC. The increased luminescence was attributed to the decreased effective phonon energy and the increased energy transfer between the excited ions when Er3 ions were incorporated into the precipitated β-PbF2 nanocrystals. The results indicated two attractive spectroscopic properties of the Er3 doped TGC samples, compared to glass samples, namely a reduced multiphonon decay rate and a reduced inhomogeneous broadening. In addition, these oxyfluoride TGC materials were robust, easy and flexibile to process, and possible to be fabricated in the fiber form for device applications.  相似文献   

11.
The blue-green emitting Eu2+ and Nd3+ doped polycrystalline barium aluminate(BaAl2O4:Eu2+,Nd3+) phosphor, was prepared by a solution-combustion method at 500 oC without a post-annealing process. The characteristic variation in the structural and luminescence properties of the as-prepared samples was evaluated with regards to a change in the Ba/Al molar ratio from 0.1:1 to 1.4:1. The morphologies and the phase structures of the products were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS), while the optical properties were investigated using ultra-violet(UV) and photoluminescence(PL) spectroscopy, respectively. The XRD and TEM results revealed that the average crystallite size of the BaAl2O4:Eu2+,Nd3+ phosphor was about 70 nm. The broad-band UV-excited luminescence of the phosphors was observed at λmax=500 nm due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. The PL results indicated that the main peaks in the emission and excitation spectrum of phosphor particles slightly shifted to the short wavelength due to the changes in the crystal field due to the structure changes caused by the variation in the quantity of the Ba ions in the host lattice.  相似文献   

12.
Phosphors of BaLiF3 doped with Eu or/and Ce were solvothermally prepared at 200°C for 5d and characterized by means of X-ray powder diffraction (XRD) and environment scanning electron microscopy (ESEM). The excitation and emission spectra of the rare earth ions doped BaLiF3 were measured by fluorescence spectroscopy and the effects of Ce3+ ions on the luminescence of Eu2+ ions were investigated. In the codoped Eu2+ and Ce3+ system, the emission intensity of Eu2+ ion gradually increased with the Ce3+ concentration increasing, and the enhancement of Eu2+ fluorescence was due to efficient energy transfer from Ce3+ to Eu2+ in the host.  相似文献   

13.
BaMgAl10O17:Eu2+,Yb3+ was investigated as a possible quantum cutting system to enhance solar cells efficiency. Phosphors were synthesized by combustion method and composed of nanorods. Photoluminescence spectra showed that Eu in the sample was reduced to bi-valence while Yb remained trivalence. Through a cooperative energy transfer process, the obtained powders exhibited both blue emission of Eu2+ (around 450 nm) and near infrared emission of Yb3+ (around 1020 nm) under broad band excitation (250-410 nm) originating from 4f→5d transition of Eu2+. Energy transfer phenomenon between the sensitizer Eu2+ and the activator Yb3+ was investigated via the lumines-cent spectra and the decay curves of Eu2+ with different Yb3+ concentrations. Results indicated that energy transfer efficiency from Eu2+ to Yb3+ was not high. The poor efficiency can be explained by the long distance between rare earth ions.  相似文献   

14.
In this experiment, strontium borate glasses were prepared using the conventional quenching method in air atmosphere. Optical absorption, photoluminescence excitation and emission spectra, X-ray excited luminescence (XEL), and luminescence decay curve of the as-prepared glasses were investigated at room temperature. The as-prepared glasses had two kinds of Eu ions, i.e., Eu^2+ and Eu^2+. Compared with the reported results of strontium borate glasses, Eu^2+ luminescence was enhanced in the studied strontium borate glasses coprepared with F^- and Li^+ ions. The coexisting of Li^+ or F^- in the borate glasses could create more negative defect Vsr″ and stabilize Eu^2+ ions, which might act as donor of electrons; For the F^- doping, the new center of B(O, F)4 (or BO3F) and BO2F2 units could be considered to be the distorted (BO4), which were needed as a rigid framework to stabilize the divalent rare earth ions.  相似文献   

15.
ZnTiO3:Eu3+ phosphors were synthesized with different concentrations of Eu3+ doping through sol-gel method. The samples were calcined at different temperatures for 2 h in air. The synthesized powders were characterized by X-ray diffraction(XRD), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), transmission electron microscopy(TEM), Raman and photoluminescence spectroscopy. The XRD results showed that the Zn Ti O3:Eu3+ phosphors doped with different concentrations of Eu3+ ions calcined at 600 oC were of single phase, which indicated that the Eu3+ ions had been successfully incorporated into the Zn Ti O3 host lattice and did not destroy the lattice structure of Zn Ti O3 host. The Raman spectrum, SEM and TEM also proved that the doping of Eu3+ did not change the lattice structure of hexagonal Zn Ti O3 host. The photoluminescence(PL) of Eu3+ ions with the main emission peak at 614 nm was observed to increase with Eu3+ concentrations from 0.5 mol.% to 2.0 mol.% and decreased when the concentration was increased to 2.5 mol.%. The decrease in the PL intensity at higher Eu3+ concentrations could be associated with concentration quenching effect. The CIE1931 chromaticity diagram(x, y) of Zn Ti O3:2.0 wt.%Eu3+ phosphors were located in the red region(x=0.652, y=0.347). The luminescence properties suggested that Zn Ti O3:Eu3+ phosphors might be regarded as a potential red phosphor candidate for light emitting diodes(LEDs).  相似文献   

16.
The blue-emitting phosphor NaBaPO4:Eu2+ was prepared by the combustion method. The phase structure and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Under the excita-tion wavelength of 360 nm, the emission spectrum exhibited only one blue band centering at 435 nm, which was ascribed to the 4f65d1→4f7 transition on Eu2+ ions. Compared with the phosphor obtained by solid-state reaction method, the relative emission intensity of sample ob-tained by combustion method increased slightly. The decay times and the temperature dependence luminescence intensities (25-300 oC) were discussed in order to further investigate the potential applications. Furthermore, Eu2+-doped NaBaPO4 phosphor showed higher thermally sta-ble luminescence comparable to commercially available Y3Al5O12:Ce3+ (YAG:Ce3+) phosphor. All the investigated suggestions that Na-BaPO4:Eu2+ is a good phosphor candidate applied in white light emitting diode.  相似文献   

17.
Eu3+-doped (Y,Gd)NbO4 phosphor was synthesized by solid-state reaction for possible application in cold cathode fluorescent lamps. A broad absorption band with peak maximum at 272 nm was observed which was due to the charge transfer between Eu3+ ions and neighboring oxygen anions. A deep red emission at the peak wavelength of 612 nm was observed which could be attributed to the 5D0→7F2 transition in Eu3+ ions. The highest luminance for Y1-x-yGdyNbO4:Eux3+ under 254 nm excitation was achieved at Eu3+ concentration of 18 mol.% (x=0.18) and Gd3+ concentration of 8.2 mol.% (y=0.082). The luminance of Y0.738Gd0.082NbO4:Eu3+0.18 was higher than that of a typical commercial phosphor Y2O3:Eu3+ and the CIE chromaticity coordinate was (0.6490, 0.3506), which was deeper than that of Y2O3:Eu3+. The particle size of the synthesized phosphors was controlled by the NaCl flux and particle size as high as 8 μm with uniform size distribution of particles was obtained.  相似文献   

18.
The interaction of TbCl3 and lanthanide(III) β-diketonate complexes with poly(N-vinylpyrrolidone)(PVP) polymer was studied using fluorescence spectroscopy. In the presence of PVP the emission of Tb3+ in ethanolic solution of TbCl3 significantly increased owing to the excitation energy transfer from PVP to Tb3+ ions, which was more efficient as compared to a direct excitation of the Tb3+ 4f75d1 levels. In contrast, emission of NEt4Tb(hfa)4 and NEt4Eu(hfa)4 complexes was almost completely quenched in solution containing PVP. The PVP bound both Ln3+ ions and hfa ligands which caused decomposition of Ln-hfa complexes and switched off the excitation energy transfer from the ligand to the emitting Ln3+ ion. The important role of hydrogen bonds in stabilization of interaction of hfa ligands with PVP was indicated.  相似文献   

19.
Eu3+ doped CaWO4 with tetragonal system were prepared at comparatively low temperature (125 ?C) in ethylene glycol medium. The phosphor was further investigated by X-ray diffractometer (XRD), photoluminescence spectrophotometer (PL), Fourier transform infra red (FT-IR) spectroscopy and transmission electron microscopy (TEM). XRD analysis indicated a decrease in the unit cell volume of CaWO4 with increasing Eu3+ ion concentration. It indicated the homogeneous substitution of Ca2+ ions in CaWO4 by the Eu3+ ions. TEM images showed that the particle size ranged from 20 to 200 nm and it could extend the application of the nanoparticles. The photoluminescence study showed that the intensity of electric dipole transition (5D0→7F2) at 614 nm dominated over the magnetic dipole transition (5D0→7F1) at 592 nm. The optimum concentration of Eu3+ for the highest luminescence was found to be 20 at.%. The as prepared samples were found to be dis-persible in water and methanol.  相似文献   

20.
The novel phosphors of La 2 MoO 6 activated with the trivalent rare earth Ln 3+ (Ln=Eu, Sm, Dy, Pr, Tb) ions were synthesized by solid state reactions at high temperature in air atmosphere, and their phase impurities and luminescent properties were studied. The photoluminescence (PL) excitation and emission spectra, and decay curves were employed to study their luminescence properties. The lifetimes of the characteristic emissions from Ln 3+ ions were in the order of millisecond except Pr 3+ ions. (LaEu 1-x ) 2 MoO 6 was a promising phosphor for practical application and the optimum concentration was x=0.075. The concentration quenching mechanism of Eu 3+ was also discussed by theoretical fitting using Burshtein model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号