首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Tin whisker formation of lead-free plated leadframes   总被引:3,自引:1,他引:2  
This paper presents the evaluation results of whiskers on two kinds of lead-free finish materials at the plating temperature and under the reliability test. The rising plating temperature caused increasing the size of plating grain and shorting the growth of whisker. The whisker was grown under the temperature cycling the bent shaped in matte pure Sn finish and hillock shape in matte Sn–Bi. The whisker growth in Sn–Bi finish was shorter than that in Sn finish. In FeNi42 leadframe, the 8.0–10.0 μm diameter and the 25.0–45.0 μm long whisker was grown under 300 cycles. In the 300 cycles of Cu leadframe, only the nodule-shaped grew on the surface, and in the 600 cycles, a 3.0–4.0 μm short whisker grew. After 600 cycles, the 0.25 μm thin Ni3Sn4 formed on the Sn-plated FeNi42. However, we observed the amount of 0.76–1.14 μm thick Cu6Sn5 and 0.27 μm thin Cu3Sn intermetallics were observed between the Sn and Cu interfaces. Therefore, the main growth factor of a whisker is the intermetallic compound in the Cu leadframe, and the coefficient of thermal expansion mismatch in FeNi42.  相似文献   

2.
Intermetallic compound (IMC) formation at the interface between the tin (Sn) plating and the copper (Cu) substrate of electronic components has been thought to produce compressive stress in Sn electrodeposits and cause the growth of Sn whiskers. To determine if interfacial IMC is a requirement for whisker growth, bright Sn and a Sn-Cu alloy were electroplated on a tungsten (W) substrate that does not form interfacial IMC with the Sn or Cu. At room temperature, conical Sn hillocks grew on the pure Sn deposits and Sn whiskers grew from the Sn-Cu alloy electrodeposits. These results demonstrate that interfacial IMC is not required for initial whisker growth.  相似文献   

3.
Sn whiskers are becoming a serious reliability issue in Pb-free electronic packaging applications. Among the numerous Sn whisker mitigation strategies, minor alloying additions to Sn have been proven effective. In this study, several commercial Sn and Sn-Ag baths of low-whisker formulations are evaluated to develop optimum mitigation strategies for electroplated Sn and Sn-Ag. The effects of plating variables and storage conditions, including plating thickness and current density, on Sn whisker growth are investigated for matte Sn, matte Sn-Ag, and bright Sn-Ag electroplated on a Si substrate. Two different storage conditions are applied: an ambient condition (30°C, dry air) and a high-temperature/high-humidity condition (55°C, 85% relative humidity). Scanning electron microscopy is employed to record the Sn whisker growth history of each sample up to 4000 h. Transmission electron microscopy, x-ray diffraction, and focused ion beam techniques are used to understand the microstructure, the formation of intermetallic compounds (IMCs), oxidation, the Sn whisker growth mechanism, and other features. In this study, it is found that whiskers are observed only under ambient conditions for both thin and thick samples regardless of the current density variations for matte Sn. However, whiskers are not observed on Sn-Ag-plated surfaces due to the equiaxed grains and fine Ag3Sn IMCs located at grain boundaries. In addition, Sn whiskers can be suppressed under the high-temperature/high-humidity conditions due to the random growth of IMCs and the formation of thick oxide layers.  相似文献   

4.
The relation between the whisker growth and intermetallic on various lead-free finish materials that have been stored at ambient condition for 2 yrs (6.3 × 107 s) is investigated. The matte Sn plated leadframe (LF) had the needle-shaped whisker and the nodule-shaped whisker was observed on the semi-bright Sn plated LF. Both the Sn plated LFs had a same columnar grain structure and both whiskers were grown in connection with the scalloped intermetallic compound (IMC) layer. The morphology of the IMC layer is similar, regardless of the area which has whisker or not. On the Sn–Bi finish and bright Sn plated LF, hillock-shaped and sparsely grown branch-shaped whiskers were observed, respectively. The IMC grew irregularly under both the areas with or without whisker. The IMC growth along the Sn grain boundaries generated inner compressive stress at the plating layer. Atomic force microscopy (AFM) profiling analysis is useful for characterization the IMC growth on the Sn and Cu interface. The measured root mean square (RMS) values IMC roughness on semi-bright Sn, matte Sn, and bright Sn plated LF were 1.82 μm, 1.46 μm, and 0.63 μm, respectively. However, there is no direct relation between whisker growth and the RMS value. Two layers of η′-Cu6Sn5 were observed using field emission transmission electron microscopy (FE-TEM): fine grains and coarse grains existed over the fine grains.  相似文献   

5.
This work describes mitigation methods against Sn whisker growth in Pb-free automotive electronics using a conformal coating technique, with an additional focus on determining an effective whisker assessment method. We suggest effective whisker growth conditions that involve temperature cycling and two types of storage conditions (high-temperature/humidity storage and ambient storage), and analyze whisker growth mechanisms. In determining an efficient mitigation method against whisker growth, surface finish and conformal coating have been validated as effective means. In our experiments, the surface finish of components comprised Ni/Sn, Ni/SnBi, and Ni/Pd. The effects of acrylic silicone, and rubber coating of components were compared with uncoated performance under high-temperature/humidity storage conditions. An effective whisker assessment method during temperature cycling and under various storage conditions (high temperature/humidity and ambient) is indicated for evaluating whisker growth. Although components were finished with Ni/Pd, we found that whiskers were generated at solder joints and that conformal coating is a useful mitigation method in this regard. Although whiskers penetrated most conformal coating materials (acrylic, silicone, and rubber) after 3500 h of high-temperature/humidity storage, the whisker length was markedly reduced due to the conformal coatings, with silicone providing superior mitigation over acrylic and rubber.  相似文献   

6.
This paper presents a design-of-experiments study on the effect of annealing and simulated reflow on tin whisker growth. Copper, brass, and alloy 42 coupons plated with either bright or matte tin were subjected to one of three elevated temperature exposures. After the elevated temperature exposures, specimens along with a set of control specimens were then kept in room ambient conditions and monitored periodically using an environmentally scanning electron microscope. Surface observations up to 16 months of room ambient exposure revealed that tin whiskers formed on the surfaces of each specimen. However, various differences in whisker growth between the matte- and bright tin-plated specimens were observed. Columnar-type whiskers grown on the matte tin plated specimens were initiated from one grain at the surface, as opposed to the growth on bright tin which were independent from the surface morphology. Maximum length and length distribution data for matte and bright tin plating for the various exposures are presented. The result of this study shows annealing to be effective in reducing the maximum length of whiskers, particularly on bright finished coupons  相似文献   

7.
Mitigation of Sn Whisker Growth by Small Bi Additions   总被引:1,自引:0,他引:1  
In this study, the morphological development of electroplated matte Sn and Sn-xBi (x = 0.5 wt.%, 1.0 wt.%, 2.0 wt.%) film surfaces was investigated under diverse testing conditions: 1-year room-temperature storage, high temperature and humidity (HTH), mechanical loading by indentation, and thermal cycling. These small Bi additions prevented Sn whisker formation; no whisker growth was observed on any Sn-xBi surface during either the room-temperature storage or HTH testing. In the indentation loading and thermal cycling tests, short (<5 μm) surface extrusions were occasionally observed, but only on x = 0.5 wt.% and 1.0 wt.% plated samples. In all test cases, Sn-2Bi plated samples exhibited excellent whisker mitigation, while pure Sn samples always generated many whiskers on the surface. We confirmed that the addition of Bi into Sn refined the grain size of the as-plated films and altered the columnar structure to form equiaxed grains. The storage conditions allowed the formation of intermetallic compounds between the plated layer and the substrate regardless of the Bi addition. However, the growth patterns became more uniform with increasing amounts of Bi. These microstructural improvements with Bi addition effectively released the internal stress from Sn plating, thus mitigating whisker formation on the surface under various environments.  相似文献   

8.
Previous studies have indicated that silanol in the form of polyhedral oligomeric silsesquioxane (POSS) trisilanol could form strong bonds with solder matrix without agglomeration, and inhibit diffusion of metal atoms when subjected to high ambient temperature and/or high current density. Addition of POSS-trisilanol has also been shown to improve the comprehensive performance of Sn-based Pb-free solders, such as shear strength, resistance to electromigration, as well as thermal fatigue. The current study investigated the whisker formation/growth behaviors of Sn-based Pb-free solders (eutectic Sn-Bi) modified with 3 wt.% POSS-trisilanol. Solder films on Cu substrates were aged at ambient temperature of 125°C to accelerate whisker growth. The microstructural evolution of the solder films’ central and edge areas was examined periodically using scanning electron microscopy. Bi whiskers were observed to extrude from the surface due to stress/strain relief during growth of Sn-Cu intermetallic compounds (IMCs). Addition of POSS-trisilanol was shown to retard the growth of Bi whiskers. The IMCs formed between POSS-modified solders and the Cu substrate showed smoother surface morphology and slower thickness growth rate during reflow and aging. It was indicated that POSS particles located at the phase boundaries inhibited diffusion of Sn atoms at elevated temperatures, and thus limited the formation and growth of IMCs, which resulted in the observed inhibition of Bi whisker growth in POSS-modified solders.  相似文献   

9.
于Sn3.8Ag0.7Cu钎料中添加过量的稀土Ce会在其内部形成大尺寸的稀土相CeSn3,将稀土相CeSn3暴露于空气中,研究在时效处理过程中时效温度对其表面Sn晶须生长的影响规律.结果表明:时效温度对稀土相CeSn3表面Sn晶须的生长产生显著影响.室温时效20 min后,其表面会形成少量的白色Sn颗粒:75℃时效20...  相似文献   

10.
Storage tests at elevated temperature and humidity conditions have been widely adopted as one of the major acceleration tests for Sn whisker growth. However, the driving force associated and the nucleation and growth process of whiskers are yet to be fully understood. In this paper, Sn whisker growth on Cu leadframe material at two different test conditions is compared. Both loose and board-mounted components were used. At each read point, the length and location of every whisker observed was recorded. Statistical characteristics and growth rate of the whisker population will be presented for each of the tests conditions. On loose components, corrosion of the Sn finish was observed near the tip and the dam bar cut area of the leads with backscatter scanning electron microscopy (SEM) and optical microscopy. The entire population of whiskers was located in these corroded areas, and there were zero whiskers located in the noncorroded areas on the same leads. On board-mounted components, the corrosion level of the Sn finish, as well as the whisker population and length was greatly reduced compared to those on the loose components. These results suggest that the corrosion of Sn finish in high-temperature and high-humidity conditions is the major driving force for whisker growth. The cause for the difference between the loose and board-mounted components is also analyzed  相似文献   

11.
The effectiveness of the widely-used whisker mitigation measures for Sn-plated Cu base material (annealing at 150 °C for 1 h or a Ni interlayer) were investigated after temperature cycling and after storage at room temperature. It was found that these measures prevent whisker growth during isothermal storage, but not during temperature cycling. These mitigation measures do apparently not reduce the compressive stress that builds up during temperature cycling due to different coefficients of thermal expansion of Sn and Cu. A change of the Sn microstructure to globular grains is proposed and investigated as potential whisker mitigation measure for temperature cycling.  相似文献   

12.
The problem of tin (Sn) whiskers has been a significant reliability issue in electronics for the past several decades. Despite the large amount of research conducted on this issue, a solution for mitigating the growth of whiskers remains a challenge for the research community. Whiskers have unpredictable growth and morphology, and a study of a whisker??s internal structure may provide further insights into the reason behind their complex growth. This study reports on the internal microstructure and morphology of complex-shaped Sn whiskers grown from an electroplated bright Sn layer on brass substrates exposed to ambient and 95% humid environment. The variables analyzed include surface and microstructure conditions of the film, and morphology and internal microstructure of the Sn whiskers using scanning electron microscopy with focused ion beam technology. Experimental results demonstrated that the whiskers with more complex morphology grow primarily from surfaces exposed to a controlled environment, and some of them have traits of polycrystalline growth rather than only single crystalline, as usually known.  相似文献   

13.
It has been discovered for the first time that Sn whiskers appeared in Sn3Ag0.5Cu0.5Ce solder joints of ball grid array (BGA) packages after storage at room temperature (natural aging) for less than 3 days and they grew at a high rate of 2.9 ?/sec. In one particular case, whiskers even formed after 1 day of storage at an extremely high growth rate of 8.6 ?/sec. Experimental investigations showed that a number of CeSn3 clusters existed in the Sn3Ag0.5Cu0.5Ce solder matrix after the reflow process. Further natural aging in air for several days caused the CeSn3 phases to oxidize rapidly, from which many Sn whiskers sprouted and grew to a length of hundreds of micrometers. The most commonly observed whiskers have been long fiber-shaped ones of 0.1 μm to 0.3 μm in diameter (type I), while short whiskers larger than 1 μm in diameter can also be found (type II). Here in our case, the surface oxide of the CeSn3 phase possessed a higher content of Ce than of Sn, which implied that a Ce-depleted region (nearly of pure Sn) was left beneath the oxide layer. The abnormal whisker growth was attributed to the compressive stress squeezing the Sn atoms in the Ce-depleted region of CeSn3 phase out of the oxide layer.  相似文献   

14.
当电子工业中完全实现无铅化时,晶须问题成为新的悬念。关于Sn晶须的成长机理和抑制方法的研究已经遍及全世界。晶须发生和成长被认为是Sn镀层上的压缩应力引起的。晶须分为内部和外部应力型。文章通过压缩负荷试验研究了外部应力型晶须的抑制方法。这种方法是Sn表面镀层和Cu上的Ni基底镀层之间介入薄Au镀层。结果发现镀Sn以后不久就形成了金属间化合物AuSn4,Au镀层有效地减轻了Sn晶须的数量,缩短了Sn晶须的长度。  相似文献   

15.
We investigate the influence of pulse-plated Ni barriers, compared to direct current (DC)-plated Ni barriers, on the growth of Sn whiskers in laminated Cu/Ni/Sn samples. The results indicate that the pulse-plated Ni barriers exhibit much better resistance to Sn whisker growth than the DC-plated Ni barriers, i.e., when exposed to ambient of 60°C and 93% relative humidity (RH) for 40 days only a few small hillocks were observed as opposed to the long whiskers and large nodules of Sn for the DC-plated Ni barriers. The underlying mechanisms are addressed based on the texture characteristics of the plated Ni and Sn layers and the formation of intermetallic compounds.  相似文献   

16.
SnAgCuY钎料表面Sn晶须的旋转生长现象   总被引:2,自引:2,他引:0  
研究了Sn3.8Ag0.7Cu1.0Y钎料表层上YSn3稀土相表面Sn晶须的生长行为。结果表明:室温时效条件下在YSn3的表面会出现Sn晶须的快速生长现象,生长速度最快可达10–10m/s,长度最长可达200μm。YSn3稀土相氧化的不均匀性是导致Sn晶须在生长时产生各种旋转现象的主要原因。  相似文献   

17.
The mechanism of reaction between Nd and Ga in Sn-Zn-0.5Ga-xNd solder was investigated in order to enhance the reliability of soldered joints. It was found that, after aging treatment at ambient temperature and 125°C for over 3000 h, no Sn whisker growth was observed in Sn-9Zn-0.5Ga-0.08Nd soldered joints. X-ray diffraction (XRD) analysis and thermodynamic calculations indicated that Ga reacted with Nd instead of Sn-Nd intermetallic compound (IMC), eliminating Sn whisker growth. Shear force testing was carried out, and the results indicated that Sn-9Zn-0.5Ga-0.08Nd solder still had excellent mechanical properties after aging treatment. This new discovery can provide a novel approach to develop high-reliability solder without risk of Sn whiskers.  相似文献   

18.
It has been long believed that residual stress is the root cause for tin whisker formation on pure tin-plated component leads. However, tin whisker formation could be observed on the surface of other tin-based alloys under certain conditions. In this study, the whisker formation was reported on a coating layer of Sn-Pb eutectic hot air solder leveling (HASL), which was under compression stress conditions due to the inserted compliant pins. In-Situ scanning electron microscopy was used to monitor the nucleation and growth of whiskers. In addition, a mechanical experiment and non-linear contact finite element analysis were used to estimate the magnitude of the stress in the HASL coating layer. It was found that the tin whisker formation with whisker size of more than 10 mum could occur on the surface of 60Sn-60Pb plating within less than 30 min at an ambient temperature under compressing stress conditions. The tin whisker initiation and growth were further studied at an elevated temperature of 70 degC to check if a higher temperature effects Tin whisker formation. It is believed that establishment of a quantitative relationship of whisker formation/growth under compressive stress and elevated temperature conditions could lead to better scientific methods for risk and reliability assessment and smooth transitions to lead-free assemblies.  相似文献   

19.
In this study, comparative studies on Sn whisker growth in Sn-0.3Ag-0.7Cu-1Pr solder under different environments were conducted to investigate factors like ambient temperature, oxygen level, and 3.5 wt% NaCl solution on whisker growth. The experimental results revealed that ambient temperature and oxygen level are two important factors that could determine the oxidation rate of PrSn3 phase, thus indirectly affecting the growth rate of Sn whiskers. In addition, mechanisms of whisker growth under these three environments were established from the perspective of atom diffusion based on the “compressive stress-induced” theory. Although whiskers under different environments were all squeezed out from Pr oxides (hydroxides), the forms of their driving forces were different. For whiskers squeezed out in air whether at room temperature or 150 °C, the driving force is the compressive stress produced by lattice expansion due to the oxidation of PrSn3 phase. The representative example was whiskers' growth at 150 °C, which could be simplified as three stages: (1) squeezing out, (2) cracking and (3) bursting out. For whisker growth in 3.5 wt% NaCl solution, the driving force for much fewer whiskers' growth was proposed to come from lateral stress provided by interfacial IMC layer growth. Moreover, Sn nanoparticles and their agglomerations were also found to form under the driving force of the potential difference between Sn atoms and Sn crystals. Their morphologies could also be affected by factors of ambient temperature, oxygen level and Cl ions in corrosive liquid.  相似文献   

20.
Localized cracking of surface oxide has been proposed as a necessary step in the nucleation of Sn whiskers in Sn electrodeposited films. To evaluate the effects of the oxide film on Sn whisker growth, a bright Sn-Cu electrodeposited film was inserted into an ultrahigh vacuum Auger system, cleaned using an Ar ion beam to remove the oxide film, and aged in the 2×10−9 Pa Auger system chamber. Whiskers and other features present during Ar+ ion cleaning left visible “shadows” on the surface. During aging in the ultrahigh vacuum system, new whiskers, identified by the absence of the telltale shadows, nucleated and grew. Based on these observations, the presence or absence of an oxide film has a minimal effect on Sn whisker nucleation and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号