首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
分别以Ti/Si/2TiC混合粉体和Ti3SiC2单相粉体作为结合剂原料,采用放电等离子体烧结技术合成了TiC/Ti3SiC2结合剂金刚石复合材料,探讨不同的结合剂原料和保温时间对TiC/Ti3SiC2结合剂金刚石复合材料的物相构成、微观形貌以及磨削性能的影响。结果表明:采用Ti/Si/2TiC为结合剂原料,保温1 min时,会形成较多量的Ti3SiC2,Ti3SiC2基体与金刚石结合良好,二者之间没有孔隙;当保温5 min时,Ti3SiC2发生分解,基体主相转变为TiC,同时有一定量的Si,金刚石表面被侵蚀,形成凹凸不平的表面。采用Ti3SiC2为结合剂原料时,Ti3SiC2基体发生严重的分解,生成TiC和Si;金刚石与基体间存在一个过渡层,厚度约15 μm。Ti/Si/2TiC为结合剂原料保温1 min时试样的磨耗比值最大,为1 128。单相Ti3SiC2为结合剂的2个试样的磨耗比值约为100左右。   相似文献   

2.
闫文青  桂赤斌  戴乐 《焊接学报》2014,35(10):77-80
采用TIG热源在钛合金表面堆焊Ti-SiC和Ti-SiC-C两种体系的粉末,形成表面陶瓷涂层.利用SEM和XRD等分析手段对两种配方陶瓷涂层的微观组织和物相进行了分析,用热力学方法计算了两种系统中各种可能发生的化学反应的Gibbs自由能变化.结果表明,Ti-SiC系统熔敷层的微观组织主要由树枝状的TiC、针棒状和菊花状的Ti5Si3相组成,其反应机理为:8Ti+3SiC→3TiC+Ti5Si3.Ti-SiC-C系统熔敷层的微观组织除了树枝状的TiC相之外,还有TiSi2和Ti3SiC2,其反应机理为:6Ti+3SiC+C→Ti3SiC2+TiSi2+2TiC.通过对两种系统的微观组织及化学反应分析可得出,在Ti-SiC系统中适当的添加石墨,可生成具有自润滑性能的Ti3SiC2相,避免Ti5Si3脆性相的生成.  相似文献   

3.
三元层状Ti3SiC2陶瓷是一种新型的陶瓷材料,具有密度低、熔点高等特点,作为增强相可以明显改善Ti3SiC2/Cu复合材料的力学性能和摩擦磨损性能。然而,在烧结过程中Ti3SiC2发生分解,导致复合材料组织与性能发生改变。为了抑制Ti3SiC2的分解,提高复合材料性能,对Ti3SiC2颗粒表面进行多弧离子镀Ti改性,制备了界面性能优良,Ti3SiC2颗粒未分解的复合材料。研究了Ti3SiC2在复合材料的分解和Ti元素对其分解的抑制机理,分析了不同含量Ti3SiC2的复合材料的组织演化。结果表明,对Ti3SiC2表面进行镀覆Ti元素可以有效抑制Ti3SiC2  相似文献   

4.
采用激光熔覆技术在Q235B钢表面制备了不同Ti3SiC2含量的Fe55/Ti3SiC2复合涂层,并利用光学显微镜、扫描电镜、X射线衍射仪、硬度仪、摩擦磨损机和电化学工作站等研究了涂层的显微组织、物相及综合性能。结果表明:由于Ti3SiC2的加入及其在高温下分解降低了熔池的换热特性等综合因素,导致Fe55/Ti3SiC2复合涂层的晶粒粗化;随着Ti3SiC2的添加,Fe55/Ti3SiC2复合涂层中形成了Cr7C3、SiC、CrC和TiSi等硬质相,组织变得粗大,并且α-Fe相的尺寸粗大及含量增加,而复合涂层中产生的硬质相不足以抵消晶粒粗化以及α-Fe硬度较小而发生软化所降低的硬度,综合导致了复合涂层的硬度下降。Fe55/Ti3SiC2复合涂层中形成的金属硅化物TiSi具有良好的抗氧化性能,减小了氧化磨损中因氧化膜脆性和疏松产生的加剧磨损,因此,足以抵消因硬度降低以及摩擦系数增大的影响,使得Ti3SiC2添加量为2%的涂层具有最高的耐磨性。  相似文献   

5.
为研究CBN用量对Ti3AlC2结合剂CBN复合材料的影响,使用不同质量配比的Ti3AlC2粉体和CBN粉体通过放电等离子体烧结的方式制备试样,并对比其物相组成和显微形貌。结果表明:当CBN质量分数为10%时,试样的主相为Ti3AlC2、CBN和TiC;当CBN质量分数为20%~40%时,生成了TiC、TiN、AlN、TiB2等物相。另一方面,当CBN质量分数为10%和20%时,CBN表面会形成厚约10 μm的过渡层;当CBN质量分数为30%和40%时,CBN与基体间没有过渡层。若选用粒度尺寸为10 μm的CBN(质量分数为10%)进行烧结,则复合材料中出现许多气孔,基体主相为TiC等轴晶粒且在CBN表面形成厚度1~2 μm的过渡层。CBN质量分数越大或粒度尺寸越小,其同Ti3AlC2的反应越充分、过渡层越薄。   相似文献   

6.
为改善Ti6Al4V合金的摩擦学性能,分别用纯Co、Co-2%Ti3SiC2、Co-5%Ti3SiC2、Co-8%Ti3SiC2混合粉末为原料,在Ti6Al4V合金表面激光熔覆制备复合涂层,利用X射线衍射仪(XRD)、扫描电镜(SEM)以及摩擦磨损试验机分析物相组成、显微组织结构以及在常温下的摩擦学性能。结果表明:所有复合涂层与基体结合良好,伴有少部分微孔。纯Co涂层的主要物相为γ-Co、CoTi、CoTi2等,而Co-Ti3SiC2涂层物相包括γ-Co、CoTi、CoTi2、TiC、Ti5Si3和残留的Ti3SiC2。涂层的硬度相对基体提高了1.90~2.15倍,而耐磨性能相应提高了3.02~5.44倍。  相似文献   

7.
为降低金刚石磨削工具的制造成本和能耗,探寻一种在低能耗下实现高性能陶瓷结合剂金刚石磨具的制备工艺,同时研究助燃剂Si和金刚石粒度等因素对样品物相组成、显微形貌和磨削性能的影响。采用Ti、Si、石墨粉和金刚石磨料作为原料,经冷压成型至生胚,通过Ni-Al辅助在微波场加热诱发Ti-Si-C体系发生自蔓延高温合成(SHS)反应以制备Ti3SiC2基金刚石复合材料。结果表明,高热值Ni-Al合金辅助可以缩短样品的烧结时间,还可以将诱发SHS反应的温度点控制在金刚石石墨化温度以下。在Ar保护气氛下,Ti-Si-C体系发生SHS反应,可生成Ti3SiC2、TiC和Ti5Si3等3种物相。随Si含量升高,Ti3SiC2相先增多后减少,当n (Ti):n (Si):n (C)=3∶1.1∶2时,复合材料的磨削性能最佳,磨耗比最高可达286.53。分析不同原料配比下的试样磨耗比差异的产生机制,认为基体组织中存在微小且分布均匀的气孔...  相似文献   

8.
采用Ti、Al、石墨和金刚石粉体为原料,通过微波诱发热爆法制备钛铝碳结合剂/金刚石复合材料,研究金刚石质量分数和颗粒平均尺寸对复合材料物相组成、显微形貌及磨耗比的影响。结果表明:在N2气氛下,原料粉末发生热爆反应,可生成Ti2AlC、Ti3AlC2、TiC、TiN、AlN和Al3Ti相。当采用较低的金刚石质量分数或较大的金刚石颗粒平均尺寸时,产物钛铝碳含量较多,同时基体与金刚石的界面结合较致密;随着金刚石的质量分数或颗粒平均尺寸增加,试样的磨耗比显著增大;当金刚石(170/200)的质量分数为30%时,试样的磨耗比达到53.8。较高的金刚石质量分数或较大的颗粒平均尺寸都可促进复合材料的磨削性能显著改善。   相似文献   

9.
氩弧熔敷Ti-Si-C系陶瓷涂层中物相的热力学预测   总被引:3,自引:3,他引:0       下载免费PDF全文
闫文青  张建强  刘升 《焊接学报》2017,38(5):108-111
利用热力学原理推导出反应焓和反应吉布斯(Gibbs)自由能与温度的关系式.根据Ti-Si-C系相图,对用钨极氩弧(TIG)热在钛合金表面熔敷形成涂层过程中可能的12个化学反应进行热力学分析.热力学计算得出,Ti元素能与SiC,Si及C元素反应生成TiC,Ti3SiC2相和Ti5Si3,TiSi2金属间化合物.理论分析结果表明,在TIG熔敷条件下,通过改变不同的原材料初始组成,可以采用热力学分析方法预测熔覆层的物相组成.试验结果表明,预测结果与试验结果符合得很好.  相似文献   

10.
Ti3SiC2是一种六方晶体结构的特殊陶瓷材料,兼具金属与陶瓷的优异性能,拥有优良的高温强度、抗氧化性及可加工性等优点,广泛应用于耐磨润滑材料。本文综述其同金属和SiC、金刚石、TiC、Al2O3等复合后的优异性能和广阔应用,并展望其在和金属、陶瓷、金刚石等材料复合领域的研究方向。   相似文献   

11.
The reactions of Ti3SiC2 and Ti in the temperature range of 1 273–1 573 K under a pressure of 20 MPa were investigated. The results confirm that Ti reacts with Ti3SiC2 above 1 273 K and new phases like TiCx, Ti5Si3 and TiSi2 are identified. The reactions are closely related to temperature and content of Ti3SiC2 in Ti. During the reaction process, Ti3SiC2 decomposes in two different modes. The first is caused by the de-intercalation of Si from it and the TiCx is formed by the remained titanium and carbon; the second is that the carbon is separated from the Ti3SiC2 and reacts with titanium furthermore. The diffusing of silicon is believed to be the determinant ingredient of the reaction.  相似文献   

12.
Ti3SiC2 was synthesized by pulse discharge sintering 4Ti/2SiC/TiC mixture powder in a temperature range of 1250–1450 °C. The purity of Ti3SiC2 was improved to 92 vol% at a sintering temperature of 1350 °C. The microstructure in the synthesized samples was controlled to be fine, coarse and duplex grains, depending on the sintering temperature and time.  相似文献   

13.
Formation of Ti3SiC2 was conducted by self-propagating high-temperature synthesis (SHS) from both the elemental powder compacts of Ti:Si:C = 3:1:2 and the TiC-containing samples compressed from powder mixtures of Ti/Si/C/TiC with TiC content ranging from 4.3 to 33.3 mol%. The effect of TiC addition was studied on combustion characteristics and the degree of phase conversion. For the elemental powder compacts, with the progress of combustion wave the sample experiences substantial deformation, including axial elongation and radial contraction. The extent of sample deformation and flame-front propagation velocity were considerably reduced for the samples with TiC addition, because the dilution effect of TiC lowered the reaction temperature. Two reaction mechanisms were adopted to explain the formation of Ti3SiC2, one involving the reaction of a Ti–Si liquid phase with solid reactants for the elemental powder compact and the other dominated by the interaction of solid-phase species for the TiC-containing sample. For all products synthesized in this study, the XRD analysis identifies formation of Ti3SiC2 along with a major impurity TiC and a small amount of Ti5Si3. The resulting Ti3SiC2 is typically elongated grains. Based upon the XRD profile, the Ti3SiC2 content at a level of 71.5 vol.% was obtained in the product from the elemental powder compact. With the addition of TiC, an improvement in the yield of Ti3SiC2 was observed and an optimal conversion reaching 85 vol.% was achieved by the sample with 20 mol% of TiC. However, further increase of the TiC amount led to a decrease in the Ti3SiC2 content, because of the low reaction temperature around 1150 °C.  相似文献   

14.
采用Ti/Ni复合中间层实现了TiAl合金和Ti3AlC2陶瓷的扩散连接,利用SEM,XRD等分析方法对接头界面结构进行了分析.结果表明,TiAl/Ti3AlC2接头典型界面结构为TiAl/Ti3Al+Al3NiTi2/Ti3Al/α-Ti+Ti2Ni/Ti2Ni/TiNi/Ni3Ti/Ni/Ni3(Ti,Al)/Ni3Al+TiCx+Ti3AlC2/Ti3AlC2.随着连接温度的升高,TiAl/Ti界面处的Tiss层逐渐减小,Ti3Al化合物层逐渐变厚;TiNi化合物层厚度显著增加,Ti2Ni和Ni3Ti层厚度基本保持不变.接头抗剪强度随连接温度升高先增加后减小,当连接温度为850℃时,接头的抗剪强度最高可达到85.3 MPa.接头主要在Ni/Ti3AlC2界面及Ti3AlC2基体处发生断裂.  相似文献   

15.
Z. Sun  Y. Zhou  M. Li 《Acta Materialia》2001,49(20):4347-4353
The oxidation behavior of Ti3SiC2-based material in air has been studied from 900°C to 1200°C. The present work showed that the growth of the oxide scale on Ti3SiC2-based material obeyed a parabolic law from 900°C to 1100°C, while at 1200°C it followed a linear rule. The oxide scale was generally composed of an outer layer of coarse-grained TiO2 (rutile) and an inner layer of fine-grained TiO2 and SiO2 (tridymite) above 1000°C. A discontinuous coarse-grained SiO2 layer was observed within the outer coarse-grained TiO2 layer on the samples oxidized at 1100°C and 1200°C. Marker experiments showed that the oxidation process was controlled by the inward diffusion of oxygen, outward diffusion of titanium and CO or SiO, and that internal oxidation predominated. The TiC content in Ti3SiC2 was deleterious to the oxidation resistance of Ti3SiC2.  相似文献   

16.
通过对比试验优选出了合适钎料,并进行了后续钎焊试验.在钎焊温度800~900℃,保温时间为10 min的条件下,采用Ag-Cu-Ti钎料实现了DD3镍基高温合金与Ti3AlC2陶瓷的真空钎焊连接.利用扫描电镜、能谱仪、XRD等对接头的界面结构进行了分析.结果表明,接头的典型界面结构为DD3/AlNi/Al3(Ni,Cu)5+Al(Ni,Cu)+Agss/(Al,Ti)3(Ni,Cu)5/Al4Cu9+AlNi2Ti+Agss/TiAg/Ti3AlC2.接头的力学性能测试表明,在钎焊温度为850℃,保温时间为10 min的条件下,接头的最高抗剪强度可达135.9 MPa,断裂发生在靠近钎缝的Ti3AlC2陶瓷侧.降低和提高钎焊温度对接头界面组织影响不大,但接头强度有一定程度下降.  相似文献   

17.
提出一个热-力-扩散-反应强耦合相场模型来研究热压烧结制备工艺对连续碳化硅纤维增强钛基复合材料中金属间化合物生长规律的影响。模拟结果表明,在两种不同温度下各个界面反应层(Ti3SiC2/Ti5Si3Cx/Ti5Si3Cx+TiC/TiC)的厚度生长与试验值吻合较好。增大外加压力能促进界面层厚度的生长,但对其中抗拉强度最低的Ti5Si3层的生长起显著的抑制作用,同时使各界面反应层由周向拉应力状态逐渐转变为压应力。温度的升高使断裂韧度最大的Ti3SiC2层厚度增大,但也使总界面层和Ti5Si3层的厚度增加。因此,在制备工艺上适当增加压力并选择合适的温度,得到厚度适宜的界面反应层的同时,尽可能使Ti5Si3层变薄和Ti3Si...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号