首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
西双版纳不同热带森林土壤氮矿化和硝化作用研究   总被引:38,自引:2,他引:36       下载免费PDF全文
1998年7月,用埋袋法对西双版纳热带季节雨林、崖豆藤(Mellettialeptobotrya)次生林、季节雨林内林窗和轮歇地土壤的氮矿化和硝化作用进行了研究。研究结果表明季节雨林和崖豆藤次生林的格局基本相同,氮净矿化速率分别为6.55mgN·kg-1·30d-1和6.37mgN·kg-1·30d-1,硝化速率分别为16.28mgN·kg-1·30d-1和16.38mgN·kg-1·30d-1。而林窗下和轮歇地土壤的氮净矿化速率和硝化速率均为负值,氮净矿化速率分别为-7.85mgN·ks-1·30d-1和-10.69mgN·kg-1·30d-1,硝化速率分别为-2.78N·kg-1·30d-1和-3.69mgN·kg-1·30d-1。从实验结果看,在30d的培养过程中,NH4-N消耗较多,导致硝化速率大于氮净矿化速率。  相似文献   

2.
 用盖顶PVC管法,将锡林河流域中1469m高海拔处的草甸草原原状土柱分别移植到海拔1187m、960m的低海拔处培养,用以研究温度变化对土壤氮素的净氨化速率、净硝化速率和净矿化速率的可能影响。经过一个生长季培养后的测定结果表明:从高海拔到低海拔,实验所选择的3个地点的年均气温分别为-0.5℃、2.2℃和4.4℃,受此不同气温的影响,移植到这3个地点的草甸草原土壤氮素的净氨化速率分别为0.05 mgN·kg-1·m-1,0.13mgN·kg-1·m-1和1.09mgN·kg-1·m-1;净硝化速率分别为0.05mgN·kg-1·m-1,0.76mgN·kg-1·m-1和0.26mgN·kg-1N·m-1;净矿化速率分别为0.10mgN·kg-1·m-1,0.89mgN·kg-1·m-1和1.35mgN·kg-1·m-1。由此可推断未来气候变化将促进草甸草原土壤氮素的净矿化作用。  相似文献   

3.
哀牢山中山湿性常绿阔叶林土壤氮转化的海拔效应   总被引:4,自引:0,他引:4  
采用树脂芯法将哀牢山中山湿性常绿阔叶林内土壤分别移植到中海拔的次生林和低海拔的人工林下培养,并以原地培养为对照,对土壤氮素转化的海拔效应进行了研究.土壤氮素的净矿化速率、净硝化速率和淋溶速率受季节和海拔的影响极为显著(P<0.01).海拔的影响在雨季前期最显著,高海拔土壤的净矿化和净硝化速率分别为-5.81和-4.18mg N·kg-1·60d-1,移植到中、低海拔培养后,净矿化速率分别为20.92和44.15 mgN·kg-1· 60 d-1,净硝化速率分别为17.07和20.38 mgN· kg-1 ·60d-1,淋溶量也分别增加了0.37倍和2.77倍.由于雨季中后期反硝化作用增加导致净矿化和净硝化速率降低,导致高、中海拔培养的土壤净氮矿化速率在雨季中期达到最高值,雨季后期降低.由此可推断,未来的气候变暖很可能会加快哀牢山中山湿性常绿阔叶林土壤氮素的转化速率和气态损失量.  相似文献   

4.
温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响   总被引:39,自引:0,他引:39       下载免费PDF全文
 更好地了解温度和湿度对土壤氮矿化过程的影响,从而估计森林生态系统土壤有机氮的矿化速率。在实验室条件下,控制土壤的温度与含水量。将不同含水量(0.12、0.20、0.28、0.35、0.40kg·kg-1)的土柱置于5℃、15℃、25℃和35℃条件下培养30d。分析培养前后的NH4+-N和NO3--N含量,确定土壤的净矿化速率和净硝化速率。结果表明:在5~25℃的温度范围内,氮的矿化速率和硝化速率与温度和湿度呈正相关。当温度超过25℃,含水量超过0.20kg·kg-1时,净矿化速率和净硝化速率随着温度和含水量的升高反而降低。温度和湿度对土壤的矿化和硝化过程存在比较明显的交互作用。我们建立了二维的方程(T,θ)来描述温度和湿度对土壤氮矿化速率的影响。暖温带土壤氮矿化的最佳条件是温度22.4℃、含水量0.40kg·kg-1。另外试验过程中,还观察到了比较明显的土壤氨挥发现象。  相似文献   

5.
四种温带森林土壤氮矿化与硝化时空格局   总被引:11,自引:0,他引:11  
傅民杰  王传宽  王颖  刘实 《生态学报》2009,29(7):3747-3758
利用PVC管原位培养连续取样法测定了东北地区4种具有代表性的森林生态系统(硬阔叶林、蒙古栎林、红松林、落叶松林)土壤氮素矿化、硝化的时间动态及氮矿化的空间分布格局.结果表明:4种森林土壤氮素矿化存在明显的时空变异.蒙古栎和红松林土壤在6月份表现出强烈的氮矿化和硝化作用,而硬阔叶林及落叶松林7月份氮素矿化强烈.4种森林生态系统上层土壤的氮净矿(硝)化率显著高于下层土壤.4种林型土壤的硝化过程在氮矿化过程中占有重要地位,其NO-3-N在无机氮中的比例分别为:79.9%~91.1%(硬阔叶林)、50.7%~80.5%(蒙古栎林)、54.1%~92.0%(红松林)、63.7%~86.5%(落叶松林).生态系统构成决定了土壤氮素的矿化能力.阔叶林和针阔混交林生态系统矿化率大于纯针叶林生态系统.硬阔叶林、红松林、蒙古栎林、落叶松林的平均净矿化率分别为:(0.58±0.01) mg · kg-1 · d-1、(0.47±0.19) mg · kg-1 · d-1、(0.39±0.11) mg · kg-1 · d-1和(0.23±0.06) mg · kg-1 · d-1.4种林型氮素矿化作用与地下5 cm温度呈正相关,并受土壤表层 (0~10 cm)水分显著影响.土壤微生物量氮与土壤氮矿化呈显著正相关.  相似文献   

6.
西双版纳不同土地利用方式下土壤氮矿化作用研究   总被引:21,自引:4,他引:17  
氮在森林生态系统的养分循环中很重要,常把土壤氮矿化速率作为生态系统中氮有效性和氮损失的指标.在云南省中国科学院西双版纳热带生态站周围,用顶盖埋管法,对季风常绿阔叶林、季节雨林、橡胶林、受过严重干扰的季节雨林、鸡血藤次生林和旱谷地的氮矿化速率进行研究.结果表明,在6种土地利用方式下,净氮矿化速率和硝化速率由大到小依次为受过严重干扰的季节雨林>鸡血藤次生林>季节雨林>季风常绿阔叶林>橡胶林>旱谷地.在西双版纳地区橡胶林和旱谷地被认为是受人为干扰较严重的土地利用方式,这两种土地利用方式与各种森林下土壤中的氮矿化速率和氮储量相比均低,达到显著水平.较低的氮矿化速率与土壤本底氮储量低有关,也与土壤中真菌数量较少有关.对西双版纳6种常见土地利用方式的土壤氮储量和氮循环速率的研究表明,受过严重干扰的季节雨林在恢复多年后土壤中养分的转化速率与原生林接近,而林地被转化为农业或经济林用地后氮储量和氮矿化速率均显著降低.  相似文献   

7.
添加氮素对沙质草地土壤氮素有效性的影响   总被引:4,自引:1,他引:3  
通过氮素添加(20g.m-2.a-1)试验,研究了科尔沁沙地东南部沙质草地生态系统土壤氮矿化及有效氮的季节变化。对2006年生长季的观测发现,添加氮素显著提高了沙质草地生长季土壤铵态氮、硝态氮、矿质氮的含量以及9月1日至10月15日的净氮矿化速率与硝化速率;添加氮素导致土壤有效氮的季节变异增大,净氮矿化(1.29~11.60mg.kg-1.30d-1)与硝化(-4.15~11.20mg.kg-1.30d-1)速率随时间呈上升趋势,铵态氮含量逐渐降低,硝态氮与矿质氮(6.49~20.66mg.kg-1)含量的变化呈"V"型,最小值出现在生物量生长高峰期的7月中旬。该沙质草地土壤氮的有效性较低,施氮肥可明显提高土壤供氮能力。  相似文献   

8.
以腾格里沙漠东南缘天然植被区藓类结皮和无结皮土壤为对象,采用野外原状土柱封顶埋管法对无机氮库和净氮转化速率的季节动态特征进行研究.结果表明:藓类结皮和无结皮土壤有效氮含量和净氮转化速率存在明显的季节变化特征,不同月份间差异显著.在非生长季,3和10月土壤有效氮含量和净氮转化速率显著高于其他月,氮矿化过程以固持态为主,两样地间土壤净氮转化速率无显著差异;在生长季,土壤有效氮含量和净氮转化速率显著增加,6—8月时达到峰值,分别为17.18 mg·kg-1和0.11 mg·kg-1·d-1.两样地土壤净硝化速率和净氮矿化速率在各月间差异显著,均表现为藓类结皮土壤>无结皮土壤.土壤铵态氮和硝态氮含量4和5月时表现为藓类结皮土壤(2.66和3.16 mg·kg-1)>无结皮土壤(1.02和2.37mg·kg-1);6—9月则表现为无结皮土壤(7.01和7.40 mg·kg-1)>藓类结皮土壤(6.39和6.36mg·kg-1).藓类结皮的繁衍与拓殖能够调节土壤有效氮含量、促进土壤氮矿化过程,是影响土壤氮素循环的重要生物因素.  相似文献   

9.
利用PVC顶盖埋管原位培育法测定了北京东灵山地区一个油松纯林和一个油松-辽东栎落叶阔叶混交林生态系统土壤无机氮库、氮素净矿化/硝化速率的季节动态以及年度净矿化/硝化量。结果发现1)两个生态系统的土壤无机氮库和氮素净矿化/硝化速率都存在比较明显且比较一致的季节动态,但个别时期也存在较大差异;2)纯林与混交林土壤NH  相似文献   

10.
采用原位培养法和时空替代法,对江西中部亚热带常绿阔叶林、天然马尾松林、人工杉木林、人工马褂木林的土壤氮素矿化速率及其有效性进行了比较研究,以探讨森林转换对土壤氮素矿化作用的影响。结果表明:转换前后各森林土壤无机氮库(NH4 -N、NO3--N)及氮素矿化速率(氨化速率、硝化速率)均呈现明显的季节动态,NH4 -N库冬春较大,NO3--N库夏秋较大,氨化速率与硝化速率均以夏秋强烈。森林转换改变了土壤氮素矿化格局,常绿阔叶林转变成马尾松林、杉木林、马褂木林后,土壤年均氨化速率分别降低了110.67%、100.76%、96.20%,而硝化速率提高了54.92%、24.19%、 24.46%;马尾松林年均总净矿化速率与常绿阔叶林相近,杉木林、马褂木林分别降低了24.68%、26.01%;另外,除常绿阔叶林外,马尾松林、杉木林、马褂木林的土壤氮素矿化量都小于植被吸收量。这些研究结果说明亚热带地区常绿阔叶林转换成其它次生林会增加氮素流失的危险性,氮素缺乏会成为这些森林生长的限制因子。  相似文献   

11.
In many forests of Europe and north-eastern North America elevated N deposition has opened the forest N cycle, resulting in NO3 ? leaching. On the other hand, despite this elevated N deposition, the dominant fate of NO3 ? and NH4 + in some of these forests is biotic or abiotic immobilization in the soil organic matter pool, preventing N losses. The environmental properties controlling mineral N immobilization and the variation and extent of mineral N immobilization in forest soils are not yet fully understood. In this study we investigated a temperate mixed deciduous forest, which is subjected to an average N deposition of 36.5 kg N ha?1 yr?1, but at the same time shows low NO3 ? concentrations in the groundwater. The aim of this study was to investigate whether the turnover rate of the mineral N pool could explain these low N leaching losses. A laboratory 15N pool dilution experiment was conducted to study gross and net N mineralization and nitrification and mineral N immobilization in the organic and uppermost (0–10 cm) mineral layer of the forest soil. Two locations, one at the forest edge (GE) and another one 145 m inside the forest (GF1), were selected. In the organic layers of GE and GF1, the gross N mineralization averaged 10.9 and 11.1 mg N kg?1 d?1, the net N mineralization averaged 6.1 and 6.8 mg N kg?1 d?1 and NH4 + immobilization rates averaged 3.8 and 3.6 mg N kg?1 d?1. In the organic layer of GE and GF1, the average gross nitrification was 3.8 and 4.6 mg N kg?1 d?1, the average net nitrification was ?25.2 and ?31.3 mg N kg?1 d?1 and the NO3 ? immobilization rates averaged 29.0 and 35.9 mg N kg?1 d?1. For the mineral (0–10 cm) layer the same trend could be observed, but the N transformation rates were much lower for the NH4 + pool and not significantly different from zero for the NO3 ? pool. Except for the turnover of the NH4 + pool in the mineral layer, no significant differences were observed between location GE and GF1. The ratio of NH4 + immobilization to gross N mineralization, gross N mineralization to gross nitrification, and NO3 ? immobilisation to gross nitrification led to the following observations. The NH4 + pool of the forest soil was controlled by N mineralization and NO3 ? immobilization was importantly controlling the forest NO3 ? pool. Therefore it was concluded that this process is most probably responsible for the limited NO3 ? leaching from the forest ecosystem, despite the chronically high N deposition rates.  相似文献   

12.
Combined measurements of nitrification activity and N2O emissions were performed in a lowland and a montane tropical rainforest ecosystem in NE-Australia over a 18 months period from October 2001 until May 2003. At both sites gross nitrification rates, measured by the BaPS technique, showed a strong seasonal pattern with significantly higher rates of gross nitrification during wet season conditions. Nitrification rates at the montane site (1.48?±?0.24–18.75?±?2.38 mg N kg?1 day?1) were found to be significantly higher than at the lowland site (1.65?±?0.21–4.54?±?0.27 mg N kg?1 day?1). The relationship between soil moisture and gross nitrification rates could be described best by O’Neill functions having a soil moisture optimum of nitrification at app. 65% WFPS. At the lowland site, for which continuous measurements of N2O emissions were available, nitrification was positively correlated with N2O emission. Nitrification contributed significantly to N2O formation during dry season (app.85%) but less (app. 30%) during wet season conditions. In average 0.19‰ of the N metabolized by nitrification was released as N2O. The N2O fraction loss for nitrification was positively correlated with changes in soil moisture and varied slightly between 0.15 and 0.22‰. Our results demonstrate that combined N2O emission and microbial N turnover studies covering prolonged observation periods are needed to clarify and quantify the role of the microbial processes nitrification and denitrification for annual N2O emissions from soils of terrestrial ecosystems.  相似文献   

13.
Griffin JM  Turner MG 《Oecologia》2012,170(2):551-565
Outbreaks of Dendroctonus beetles are causing extensive mortality in conifer forests throughout North America. However, nitrogen (N) cycling impacts among forest types are not well known. We quantified beetle-induced changes in forest structure, soil temperature, and N cycling in Douglas-fir (Pseudotsuga menziesii) forests of Greater Yellowstone (WY, USA), and compared them to published lodgepole pine (Pinus contorta var. latifolia) data. Five undisturbed stands were compared to five beetle-killed stands (4–5 years post-outbreak). We hypothesized greater N cycling responses in Douglas-fir due to higher overall N stocks. Undisturbed Douglas-fir stands had greater litter N pools, soil N, and net N mineralization than lodgepole pine. Several responses to disturbance were similar between forest types, including a pulse of N-enriched litter, doubling of soil N availability, 30–50 % increase in understory cover, and 20 % increase in foliar N concentration of unattacked trees. However, the response of some ecosystem properties notably varied by host forest type. Soil temperature was unaffected in Douglas-fir, but lowered in lodgepole pine. Fresh foliar %N was uncorrelated with net N mineralization in Douglas-fir, but positively correlated in lodgepole pine. Though soil ammonium and nitrate, net N mineralization, and net nitrification all doubled, they remained low in both forest types (<6 μg N g soil?1 NH4 +or NO3 ?; <25 μg N g soil?1 year?1 net N mineralization; <8 μg N g soil?1 year?1 net nitrification). Results suggest that beetle disturbance affected litter and soil N cycling similarly in each forest type, despite substantial differences in pre-disturbance biogeochemistry. In contrast, soil temperature and soil N–foliar N linkages differed between host forest types. This result suggests that disturbance type may be a better predictor of litter and soil N responses than forest type due to similar disturbance mechanisms and disturbance legacies across both host–beetle systems.  相似文献   

14.
Summary Nitrogen availability is a critical component of productivity in successional lowland rainforests, and nitrogen losses from a given system may largely depend on rates of nitrification in soils of the system. Two hypotheses were tested in a study of a 6-point secondary rainforest sere in the coastal lowlands of Costa Rica: that nitrification and N mineralization change in a directed fashion in lowland rainforest successions, and that nitrification is regulated by ammonium availability at all points along the sere. Nitrate and mineral N production were measured in short-term laboratory incubations of soils from different stages of secondary succession corresponding to 0, 3, 8, 16, 31 and 60 + years following disturbance. Results indicate that nitrification increases through the first 4 successional stages and then declines somewhat before leveling off. In soil from all sites, most of the N mineralized was nitrified, and added NH4Cl strikingly stimulated net nitrate production. Added NaH2PO4, CaCO3, and CaSO4 did not stimulate net nitrate production or did not result in a greater proportion of nitrate than in controls. These results suggest that nitrification and N mineralization may tend to increase through secondary rainforest succession and that ammonium availability along the sere regulates rates of nitrification.  相似文献   

15.
Tropical montane forests are commonly limited by N or co-limited by N and P. Projected increases in N deposition in tropical montane regions are thought to be insufficient for vegetation demand and are not therefore expected to affect soil N availability and N2O emissions. We established a factorial N- and P-addition experiment (i.e., N, P, N + P, and control) across an elevation gradient of montane forests in Ecuador to test these hypotheses: (1) moderate rates of N and P additions are able to stimulate soil-N cycling rates and N2O fluxes, and (2) the magnitude and timing of soil N2O-flux responses depend on the initial nutrient status of the forest soils. Moderate rates of nutrients were added: 50 kg N ha?1 year?1 (in the form of urea) and 10 kg P ha?1 year?1 (in the form of NaH2PO 4 . 2H2O) split in two equal applications. We tested the hypotheses by measuring changes in net rates of soil–N cycling and N2O fluxes during the first 2 years (2008–2009) of nutrient manipulation in an old-growth premontane forest at 1,000 m, growing on a Cambisol soil with no organic layer, in an old-growth lower montane forest at 2,000 m, growing on a Cambisol soil with an organic layer, and an old-growth upper montane rainforest at 3,000 m, growing on a Histosol soil with a thick organic layer. Among the control plots, net nitrification rates were largest at the 1,000-m site whereas net nitrification was not detectable at the 2,000- and 3,000-m sites. The already large net nitrification at the 1,000-m site was not affected by nutrient additions, but net nitrification became detectable at the 2,000- and 3000-m sites after the second year of N and N + P additions. N2O emissions increased rapidly following N and N + P additions at the 1,000-m site whereas only smaller increases occurred at the 2,000- and 3,000-m sites during the second year of N and N + P additions. Addition of P alone had no effect on net rates of soil N cycling and N2O fluxes at any elevation. Our results showed that the initial soil N status, which may also be influenced by presence or absence of organic layer, soil moisture and temperature as encompassed by the elevation gradient, is a good indicator of how soil N cycling and N2O fluxes may respond to future increases in nutrient additions.  相似文献   

16.
Owen  Jeffrey S.  Wang  Ming Kuang  Sun  Hai Lin  King  Hen Biau  Wang  Chung Ho  Chuang  Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4 + in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3 varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4 + concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3 varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4 + concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号