首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用硬度测试和差示扫描量热法研究时效前不同冷轧变形量对2519A铝合金析出动力学的影响。根据DSC曲线,采用单升温速率法计算合金的激活能;采用透射电子显微镜观察冷轧和峰时效状态下合金的微观组织。结果表明:随着冷轧变形量从7%增加至40%,合金的时效硬化能力降低,激活能升高。当冷轧变形量为15%时,在冷轧态合金组织中观察到密度不均匀的位错组织,在峰时效状态合金组织中观察到不均匀分布的θ′相。不均匀分布的θ′相可能是造成合金时效硬化能力降低和激活能升高的原因。  相似文献   

2.
利用光学显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究大变形冷轧Al-6Mg-0.4Mn-0.25Sc-0.1Zr(质量分数,%)合金在不同稳定化退火过程中的组织演变及单轴拉伸断裂行为。结果表明:在大变形冷轧过程中,弥散分布的纳米级Al3(Sc,Zr)粒子阻碍位错运动和晶界迁移,位错密度显著增加。高密度的位错缠结诱发局部不均匀变形,形成大量剪切变形带。冷轧状态下,合金组织分布不均匀,剪切带区域位错密度较大,变形储能较高,在单轴拉应力状态下,合金沿着剪切带方向发生剪切断裂。在稳定化退火过程中,剪切变形带中优先发生形核与晶粒长大。随着稳定化退火温度的不断提高,亚晶发生合并长大,剪切变形组织逐渐消失,合金的断裂行为由剪切断裂转变为混合型韧性断裂。经过高温稳定化退火处理后,部分Al3(Sc,Zr)粒子发生粗化,析出相弥散强化作用减弱,少量粗大粒子转变为裂纹源,合金强度逐渐减弱。  相似文献   

3.
采用扫描电子显微镜、电子背散射衍射和透射电子显微镜研究了GH4169合金在冷轧和热处理过程中的组织演变和力学特征。结果表明,随着冷轧变形的增加,晶粒被拉长成纤维状,微观组织中未观察到δ相。热处理后,原始变形晶粒被细小的再结晶晶粒取代,晶粒尺寸随着冷轧变形量的增加和热处理温度的降低而减小。但当变形量大于50%时,出现混合晶粒结构。热处理温度为950和990℃时,基体中存在δ相析出。随变形量的增加,δ相含量而增加,形态由短棒状变为球状。在冷轧状态下,当变形量为70%时,抗拉伸强度(UTS)达到1484.27 MPa,是冷轧态合金(772.5 MPa)的1.92倍,但延伸率(EL)降低到8.93%。然而经过990℃热处理后,延伸率提高到46.47%,是冷轧状态合金EL的5.2倍。冷轧变形量为50%、热处理温度为990℃时,获得了最佳的力学性能组合(UTS=943.59 MPa,EL=52.31%)。  相似文献   

4.
采用真空熔炼法制备Fe-20Mn-3.0Cu-1.38C高强度高塑性合金钢,通过单向拉伸、X射线衍射(XRD)、光学显微镜(OM)和透射电子显微镜(TEM)方法研究了不同冷轧变形量(12.8%~73.37%)对该合金钢微观组织、力学性能的影响,分析了冷轧变形量为32.28%该合金钢的拉伸变形微观机制。结果表明,该合金冷轧变形前后均为单相奥氏体组织,无马氏体相变发生。随着冷轧变形量的增加,合金钢的屈服强度、抗拉强度均显著提高,伸长率则减小。当冷轧变形量为32.28%,该合金钢的规定非比例延伸强度高达1383.99 MPa,抗拉强度为1619.83 MPa,达到超强钢的水平,并仍然保留41.12%的伸长率,综合性能优异。该冷轧变量下的合金拉伸变形过程中,产生TWIP效应,位错的塞积、形变孪晶的产生以及位错与孪晶间的交互作用共同提高材料的塑性和强度。  相似文献   

5.
采用晶间腐蚀和剥落腐蚀性能测试研究冷轧变形量(50%~90%)对Al-Cu-Mg-Ag耐热铝合金抗腐蚀性能的影响,结合金相显微分析和透射电子显微分析对其机理进行探讨。结果表明:增大冷轧变形量能够细化合金的再结晶晶粒,减小无沉淀析出带的宽度及其与基体的电位差。合金的抗晶间腐蚀性能主要由合金的晶界结构决定。增大冷轧变形量能够提高合金的抗晶间腐蚀性能。合金的抗剥落腐蚀性能由晶界结构和晶粒形貌决定。随着冷轧变形量的增大,合金的剥落腐蚀速率先增大后减小;冷轧变形量为50%的试样抗剥落腐蚀性能最佳。  相似文献   

6.
采用DSC、TEM、导电率和力学性能等测试方法,研究了不同冷轧变形量对Cu-3.0Ni-0.60Si-0.16Zn-0.15Cr-0.03P (质量分数,%)合金组织性能与析出行为的影响,旨在通过工艺调控提升该合金的综合性能。通过对比不同冷轧变形后合金的开始析出温度和再结晶温度以及时效后合金的组织性能,确定了高性能Cu-NiSi系合金的形变-时效工艺参数,明确了冷轧变形量对合金时效析出动力学的影响规律和强化相析出的调控机制;合金经过95%冷轧+450℃、60 min形变热处理后获得了显著优于现有Cu-Ni-Si合金(如C70250)的性能,其抗拉强度为(841±10) MPa,导电率为(52.2±0.3)%IACS。  相似文献   

7.
研究轧制变形量和轧后退火工艺对Mg-9Li-1Zn(LZ91)合金显微组织和耐腐蚀性能的影响。采用冷轧变形工艺制备轧制压下量分别为50%和75%的LZ91镁合金板材,然后在200℃下退火1 h。采用光学显微镜和扫描电子显微镜观察合金的显微组织,用X射线衍射仪测定合金中的相组成。结果表明,LZ91镁合金由α-Mg、β-Li和Mg-Li-Zn三元化合物(MgLi2Zn和MgLiZn相)组成。退火过程中β-Li相发生动态再结晶,合金晶粒细化。腐蚀试验表明:轧制变形和轧后退火能显著改善LZ91合金的耐腐蚀性能,75%冷轧退火LZ91镁合金具有最好的耐蚀性。  相似文献   

8.
采用热冷组合铸型(HCCM)水平连铸工艺制备300 mm(宽)×10 mm(厚) Cu-0.36%Be-0.46%Co(质量分数)合金带材,对连铸带材进行冷轧,研究轧制过程中合金显微组织和力学性能的变化规律与变形机理。结果表明:连铸带材具有沿长度方向的柱状晶组织,表面质量好,断后伸长率达到35%,无需表面处理可直接进行大变形冷轧加工,无中间退火的累积冷轧变形量达98%。当变形量较小时(20%),变形机理为位错滑移,形成大量弥散分布的位错和位错胞;当变形量为40%时,合金中出现形变孪晶,且孪晶与位错胞相互作用形成长条状位错胞;当变形量超过60%时,形成切变带,发生明显的微区晶体转动;随着变形量的进一步增大,切变带数量增多且相互作用,使晶粒明显细化。抗拉强度和硬度由铸态的353 MPa和HV 119分别升高至冷轧变形量95%时的625 MPa和HV 208,断后伸长率则由35%降低至7.6%。该结果可为发展铍铜合金带材HCCM水平连铸-冷轧短流程高效加工方法提供实验依据。  相似文献   

9.
采用电子背散射衍射技术对大变形量冷轧Ni9W合金的微观组织和取向进行了研究。结果表明,大变形量Ni9W合金的变形组织极不均匀,存在大量的剪切带和孪生界面。冷轧Ni9W合金的织构为黄铜型轧制织构,随变形量增加,黄铜、S体积分数增加,铜、Goss分数减少。对99%变形量下各个取向区域的储存能进行了计算。结果表明,S、黄铜比铜、Goss取向的储存能高。  相似文献   

10.
研究冷轧和后续退火形变热处理对Ni_(50)Ti_(50)形状记忆合金超弹性行为的影响。采用铜坩埚真空感应熔炼法制备样品。将成分均匀的样品进行热轧后在900°C退火,然后再进行冷轧,冷轧后样品的厚度有不同程度的减少,最大可达70%。透射电镜检测结果显示严重的冷轧导致Ni_(50)Ti_(50)合金中形成了纳米晶和非晶的复合显微组织。400°C下退火1 h后,冷轧样品中的非晶发生晶化形成纳米晶组织。随着冷轧变形量的增加,在超弹性实验中Ni_(50)Ti_(50)合金的弹性应变增加,变形量为70%的冷轧-退火样品其弹性应变为12%。此外,随着变形量的增加,应力诱导马氏体相变的临界应力提高。值得注意的是,70%变形量的冷轧-退火样品的阻尼容量值为28 J/cm3,明显高于商业NiTi合金。  相似文献   

11.
研究了时效前不同冷轧预变形量(ε=7%,14%,20%,27%)对1460合金沉淀强化过程的影响。当冷轧变形量增加至20%时,合金中出现位错墙(dense dislocation wall)。位错为T1相提供了形核位置,使得合金中T1相的数量增加,同时尺寸保持在100 nm左右,缩短了峰值时效时间。27%冷轧变形+160℃/20 h时效能提高合金的强度,同时塑性较好,此时合金的抗拉强度和延伸率分别为590 MPa和8%。  相似文献   

12.
采用大气熔炼-铁模浇铸的方法制备了Cu-Cr-Ti合金铸锭,通过热轧-固溶-时效-冷轧工艺制备了带材。采用配备电子背散射衍射系统(EBSD)的扫描电子显微镜(SEM)以及透射电子显微镜(TEM)等检测手段对冷轧后的Cu-Cr-Ti合金的组织与性能进行观测分析。结果表明,随着冷轧加工率增加,晶粒尺寸减小,位错密度增大,合金显微硬度升高;同时,变形中合金织构发生转变,随着冷轧的进行,{001}110旋转立方型织构减弱趋于消失,{112}111铜型织构先增强后减弱,{123}634 S型织构体积分数一直增加,当加工率达到90%后,S型织构成为主要织构类型。  相似文献   

13.
利用Taylor松弛约束(Relaxed Constraints,Taylor-RC)模型模拟了2种不同初始取向的Zr-Sn-Nb合金板材在冷轧过程中的织构演变,并对比了模拟结果和X射线衍射(XRD)实测织构之间的差异。结果表明,选用合适的变形系统和临界分切应力比值,Taylor-RC模型可以有效模拟Zr-Sn-Nb合金冷轧中的织构演变。结合模拟所得的2种板材不同变形系统的相对开启量,解释了锆合金冷轧织构的形成原因  相似文献   

14.
冷轧与退火对LA91合金显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
对热挤压态LA91合金进行了冷轧及退火处理,研究了不同冷轧变形量与退火温度对合金显微组织和力学性能的影响。结果表明,总轧制变形量为76.7%的LA91合金薄板具有较高的强度和良好的塑性(抗拉强度为177 MPa,伸长率为37.4%)。在200~300℃范围内退火,冷轧LA91合金发生回复和再结晶,β相逐渐变为等轴状,α相逐渐球状化。因此,随退火温度升高,合金薄板的抗拉强度先降低后升高,伸长率则先升高后降低。同一变形量下,合金中的α相再结晶温度略高于β相;经1h退火,不同变形量的冷轧LA91合金开始再结晶的温度略微不同,约为250℃,退火温度为300℃时,再结晶完成。  相似文献   

15.
研究冷轧变形量(40%、75%和95%)和退火温度(650、750和850℃)对亚稳β钛合金Ti-7.5Nb-4Mo-2Sn(原子分数,%)的显微组织、织构和超弹性的影响。结果表明:不同冷轧变形量变形后,合金中出现了{111}110,{111}112和{001}110型冷轧织构,随变形量增大,冷轧织构强度有小幅度增加,其中以{111}112、{111}110型织构强度增幅度最大;经过650~850℃退火后,合金发生再结晶,并形成了再结晶织构,其中变形量为95%、650℃退火后,试样的组织由细小的等轴状β相构成,同时形成了较强的{112}110,{111}112再结晶织构,合金试样表现出较好的超弹性,其应变回复率71.5%;细小的等轴晶组织和{111}112再结晶织构,能提高合金的超弹性能。  相似文献   

16.
采用轧制辅助双轴织构技术(RABi TS)制备了无磁性强立方织构的Cu60Ni40合金基带。对Cu60Ni40合金基带冷轧及再结晶退火后的织构进行分析。结果表明:轧制总变形量及再结晶退火工艺是影响Cu60Ni40合金基带再结晶晶粒取向的主要因素。经过大变形量冷轧,Cu60Ni40合金基带表面可以得到典型的铜型轧制织构。通过优化的冷轧及两步再结晶退火工艺获得了立方织构含量高达99.7%(≤10°)、小角度晶界含量高达95.1%的Cu60Ni40合金基带,Σ3孪晶界含量为0.1%。  相似文献   

17.
研究了冷轧变形量和退火温度对Cu-44%Ni合金中立方织构的形成及微观组织演变的影响。结果表明增大变形量和提高退火温度均有利于立方织构的形成,而且在变形量大于90%和退火温度高于900 ℃的条件下,可以得到非常强的立方织构。另一方面,随着变形量的增加,退火孪晶(Σ3晶界)和大角度晶界降低;但是在等温退火中,随着退火温度的增加,Σ3晶界和大角度晶界先迅速的增加,然后逐渐减少。冷轧变形量99%的Cu-44%Ni 合金在1100 ℃高温退火1h后可以获得了99.8%的立方织构,并且大角度晶界和退火孪晶界分别为2.5%和1.3%。  相似文献   

18.
利用光学显微镜、透射电子显微镜、X射线衍射和HB-3000B型布氏硬度计对Fe-15Ni-12Mn-3.5C-2.5Si合金在不同冷轧变形量条件下的组织和性能进行了分析和研究.实验表明,随变形量的增大,晶内出现大量的位错缠结组织.晶粒细化为微晶和纳米晶.合金硬度随变形量的增加而增大.说明位错硬化机制和纳米晶、非晶态的产生是Fe-15Ni-12Mn-3.5C-2.5Si合金产生应变硬化的原因.  相似文献   

19.
采用显微组织观察、室温拉伸、硬度测试研究了冷轧变形量对Mg-9Li-1Zn合金在不同加工状态下显微组织和力学性能的影响。结果表明:铸态Mg-9Li-1Zn合金组织为α-Mg和β-Li的两相混合组织。随着冷轧变形量的增加,合金中α-Mg相和β-Li相逐渐被拉长,两相取向性越来越明显。在变形量80%的合金中,α-Mg相和β-Li相的组织明显细化,呈细条状分布。随着冷轧变形量的增加,合金的抗拉强度、硬度逐渐升高,伸长率逐渐降低。变形量80%的合金抗拉强度达到197MPa,硬度达到74.3HV,但伸长率降到9.0%。合金冷轧后200℃×1 h退火处理,合金的塑性明显改善,80%变形量轧制合金退火后伸长率达到24.1%。  相似文献   

20.
利用X射线衍射仪(XRD)、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和拉伸测试等手段,研究形变热处理对新型 β(Ti-25Nb-25Zr)钛合金组织演变和力学性能的影响.结果表明:由于合金具有较高的β稳定性,冷轧过程没有应力诱发α″相的形成,合金的变形机制以位错滑移为主.随着冷轧变形量的增加,加工硬化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号