首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boron doped hydrogenated amorphous carbon (a-C) thin films have been deposited by r.f.-plasma CVD with a frequency of 13.56 MHz at room temperature using pure methane as a precursor of carbon source mixed with hydrogen (H2) as a carrier gas. The films were prepared by varying the r.f. power, different flow rates of CH4, and partial pressure of mixed gas (CH4/H2) using solid boron as a target. The thickness, structural, bonding and optical properties of the as-deposited films were studied by Alpha step surface profiler, Raman, FT-IR, XPS and UV–visible spectroscopy. It was found that changing the deposition pressure in presence of solid boron dopant in the r.f. PECVD process has a profound effect on the properties of the deposited films, as evidenced from their Raman scattering and optical results. The grown p-C: B films were found very smooth and thickness in the range of 240 to 360 nm for 1 h deposition. Films deposited at lower pressure appear brownish color whereas those deposited at higher pressure appear pale yellowish. The as-deposited film is found to be dominated by sp2 rather than sp3, which might be due to the formation of small crystallites. The optical band gap is found to be reduced from 2.601.58 eV as the partial pressure of CH4/H2 gas is reduced.  相似文献   

2.
《Diamond and Related Materials》2003,12(10-11):2016-2019
Layer-by-layer deposition method, in which nanometer-thick film deposition and hydrogen plasma annealing processes were alternatively repeated, was applied to fabricate hydrogenated amorphous carbon films in our present work. It was found that the hydrogen plasma treatment changed the sp2/sp3 ratio due to chemical etching. Consequently, a stable vacuum electron emission with a low threshold field was achieved compared with that from conventionally deposited a-C films. The threshold electric field is as low as 2 V/μm. The influence of the hydrogen plasma chemical annealing on the field emission behavior was systematically investigated. The improvement of field emission characteristics can be attributed to the large field enhancement effect due to the inhomogeneous distribution of nanometer scale sp2 clusters.  相似文献   

3.
Tetrahedral amorphous carbon (ta-C) films have been deposited by filtered cathodic vacuum arc technique. The samples were then annealed at various temperatures in nitrogen and acetylene ambient. The surface morphologies and microstructure of the films were characterized using atomic force microscopy, scanning electron microscopy, visible and ultraviolet Raman spectroscopy. A thin layer of amorphous carbon was deposited on the surface of the ta-C films after annealed at 700 and 800 °C while submicro crystalline pyrolytic graphite was formed on the surface of the ta-C film annealed at 900 °C. The surface layer was found to enhance the sp2 clustering of the underlying ta-C layer. Field emission results reveal that the sp2 cluster size plays an important role in electron field emission properties. The threshold field decreases as the sp2 cluster size increases. For the film annealed at 800 °C, the lowest threshold field and the largest cluster size concurred.  相似文献   

4.
Hydrogenated amorphous carbon (a-C:H) films deposited from CH4 in a dual electron cyclotron resonance (ECR)–r.f. plasma were treated in N2 plasma at different r.f. substrate bias voltages after deposition. The etching process of a-C:H films in N2 plasma was observed by in situ kinetic ellipsometry, mass spectroscopy (MS), and optical emission spectroscopy (OES). Ex situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the etched film surface. XPS analysis proves that the nitrogen treatment on the a-C:H film, induced by r.f. substrate bias, causes a direct nitrogen incorporation in the film surface up to 15–17 at.% to a depth of about 20–40 Å depending on the r.f. bias. Various bonding states between carbon and nitrogen, such as tetrahedral sp3 C–N, and trigonal sp2 C–N were confirmed by the deconvolution analysis of C 1s and N 1s core level spectra. The evolution of etching rate and the surface roughness in the film measured by AFM exhibit a clear dependence on the applied r.f. bias. MS and OES show the various neutral species in the N2 plasma such as HCN, CN, and C2N2, which may be considered as the chemical etching products during the N2 plasma treatment of a-C:H film.  相似文献   

5.
For the purpose of improving the electron field emission properties of ultra-nanocrystalline diamond (UNCD) films, nitrogen species were doped into UNCD films by microwave plasma chemical vapor deposition (MPCVD) process at high substrate temperature ranging from 600° to 830 °C, using 10% N2 in Ar/CH4 plasma. Secondary ion mass spectrometer (SIMS) analysis indicates that the specimens contain almost the same amount of nitrogen, regardless of the substrate temperature. But the electrical conductivity increased nearly 2 orders of magnitude, from 1 to 90 cm 1 Ω 1, when the substrate temperature increased from 600° to 830 °C. The electron field emission properties of the films were also pronouncedly improved, that is, the turn-on field decreased from 20 V/μm to 10 V/μm and the electron field emission current density increased from less than 0.05 mA/cm2 to 15 mA/cm2. The possible mechanism is presumed to be that the nitrogen incorporated in UNCD films are residing at grain boundary regions, converting sp3-bonded carbons into sp2-bonded ones. The nitrogen ions inject electrons into the grain boundary carbons, increasing the electrical conductivity of the grain boundary regions, which improves the efficiency for electron transport from the substrate to the emission sites, the diamond grains.  相似文献   

6.
Research on hydrogen amorphous carbon films (a-C:H), which possess the diamond-like characteristic, has been stimulated for many years by need to simultaneously optimizing the mechanical, optical and biological properties, and by challenges related to the deposition of a-C:H films on medical implants. In the present work, we investigate the structure, optical and mechanical properties (hardness, elastic modulus and stress) of a-C:H films deposited on 316L stainless steel substrate by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD). The negative self-bias voltages significantly influence on temperature of steel substrates during the deposition process and films properties. Specifically, the high energetic deposition leads also to stabilization of the sp2 content and thermally-activated relaxation in the stress of a-C:H films. Presented correlation between the obtained results and literature analysis let deem the Raman spectra as a good tool to control the properties of implants made of 316L stainless steel with a-C:H film for general use.  相似文献   

7.
The relationships between the deposition conditions, the growth mechanisms, the microstructure and the electronic density of states of hydrogenated amorphous carbon (a-C:H) films prepared by PECVD from hydrocarbons are not yet fully understood. We therefore performed a systematic study using several complementary techniques to determine the changes in the microstructure and in the optical properties of a-C:H samples deposited from a dual micro-wave/radio-frequency discharge in methane as a function of the negative r.f. bias voltage applied to the substrate −Vb. The results reveal the existence of two successive film growth regimes when varying −Vb from −30 to −600 V, i.e. when increasing the ion bombardment during deposition, which lead to different types of sp2 C atoms clustering and H incorporation, but to the same density of paramagnetic defects. Models of the a-C:H microstructure are proposed in each case, and their influence on the electronic states density is analysed in detail. It is shown that the H content and the proportion of sp2 C atoms play a minor role on the electronic properties, as compared to the nature, the size, the number and probably the distortions of the π-bonded clusters.  相似文献   

8.
Thickness dependency of the field emission of amorphous and nanostructured carbon thin films has been studied. It is found that in amorphous and carbon films with nanometer-sized sp2 clusters, the emission does not depend on the film thickness. This further proves that the emission happens from the surface sp2 sites due to large enhancement of electric field on these sites. However, in the case of carbon films with nanocrystals of preferred orientation, the emission strongly depends on the film thickness. sp2-bonded nanocrystals have higher aspect ratio in thicker films which in turn results in higher field enhancement and hence easier electron emission.  相似文献   

9.
Nano-diamond films having grain size around 20 nm were deposited by bias enhanced growth (BEG) method. Different surface treatments were carried out to increase their field emission properties and their effects are clearly noticed. Surface morphology of different surface treated nano-diamond films was examined. There was no significant change in the curve of Raman spectra of different surface treated samples. Raman spectra were typically of similar nature to nano-diamond film. Field emission results were more interesting. Biased in hydrogen plasma treated nano-diamond film has shown best electron emission behavior and low turn-on-field (E0). The turn-on-field of bias-treated nano-diamond film was 19.5 V/μm. The decrease of turn-on-field (6 V/μm) of biased treated nano-diamond film from as-grown BEG film was attributed to the formation of thin sp2 layer and more defects on the surface of film by hydrogen ion bombardment. Moreover, hydrogen-plasma treated nano-diamond film was also found to be good for electron emission but there was no improvement in electron emission as in the case of air plasma treated nano-diamond films.  相似文献   

10.
Hydrogenated amorphous carbon (a-C:H) films have been deposited from acetylene gas in a microwave electron cyclotron resonance (ECR) plasma reactor. The films were deposited at a pressure of 0.2 mTorr and at radio frequency (r.f.) induced substrate biases from 80–300 V. Selected film properties, including optical bandgap and bonded hydrogen content, were measured. At r.f. induced biases from 150 to 300 V, corresponding to ion energies for C2H2+ of approximately 150–300 eV, the hydrogen content remains constant and the optical bandgap peaks at a bias of 200 V, or approximately 100 eV per carbon in the C2H2+ ions. This ECR system result is in agreement with those observed by other researchers using different deposition methods where an optical bandgap maximum and an sp3 maximum occurs at ion energies of 90–100 eV per carbon atom. The discharge properties measured include a partial pressure analysis of the residual exit gas and the substrate current density.  相似文献   

11.
a-C:H films are deposited using microwave-assisted plasma CVD deposition under the influence of low-D.C. bias and high-pulse bias. Pulsed bias applied to the substrate results in higher growth rates compared to the D.C. bias. Microstructure of these films is studied using Raman and photoluminescence spectroscopy (PL) indicating different bonding configurations of sp2 clusters. The D-band, which is present in samples deposited under D.C. bias, is found to be absent in case of samples deposited under pulsed bias. This suggests presence of six-fold aromatic rings (benzene type) in films prepared under D.C. bias, which are absent in the later samples. Instead, these samples have distorted six-fold rings and/or olefinic chains. The PL spectra have been analyzed based on different bonding configurations of sp2 clusters forming defect states, recombination within which leads to sharp PL peaks. The intense PL peaks observed in the case of pulsed bias together with the missing D-band in their Raman spectra suggest abundance of distorted six-fold aromatic rings.  相似文献   

12.
We present the soft x-ray spectroscopic study of the ultra-nanocrystalline diamond (UNCD) films with different surface treatments. The samples were prepared by means of microwave plasma enhanced chemical vapor deposition (MPECVD) and the different surface treatments are applied to alter their field emission properties. The electronic properties were subsequently examined by the soft x-ray absorption and x-ray emission spectroscopy at carbon 1s threshold. From the experimental results, there is no significant variation in electronic structure of oxygen- and hydrogen-plasma treated UNCD films. On the other hand, the biased treated UNCD film shows more remarkable change on the sp2 and sp3 states. The formation of sp2 bonding and the reduction of sp3 bonding are the consequence of the improved electron field emission properties.  相似文献   

13.
Field emission has been reported to occur at much lower fields in carbon based thin film systems than from any other material systems. The emission has been shown to depend on the various material parameters, but whichever carbon based system is used, it is found that emission occurs at localised sites rather than uniformly over the entire surface. Carbon films with mixed sp3/sp2 bonding, like nanocrystalline diamond and nanocluster graphitic films emit at lower fields with a higher emission site density than single-phase films. The sp2 cluster size in any carbon film can be altered during deposition, but it is easier to control nanocluster size by post-deposition annealing. Annealing increases the sp2 cluster size embedded in a sp3 matrix until the sp3 matrix disappears completely and the film transforms into nanocrystalline graphite. To distinguish the effects of the sp2 cluster size from other material parameters, a series of different carbon films were annealed post-deposition and the sp2 cluster size was measured using visible Raman. Field emission was then measured at a vacuum of 10−8 mbar on all films using a parallel plate configuration. It was found that the field emission for all films tested depended upon the clustering of the sp2 phase and this effect dominates the effects of the other parameters, such as chemical composition, surface termination, sp3 content or conductivity. The optimum size of the sp2 was of the order of 1 nm for all systems tested. We believe that field emission occurs form the localised conducting, predominantly sp2 bonded regions, which provideds the large field enhancement required for effective emission.  相似文献   

14.
Deposition of the good electron-emitting diamond films on a chrome electrode, which is essential for the development of the actual display device, was successfully carried out. Emission current densities of 1 μA/cm2 and 1 mA/cm2 were measured at the electric field of 6.6 and 12.3 V/μm, respectively. The emission images revealed that the emission site density was ∼104 sites/cm2. Both Raman spectroscopy and scanning electron microscopy showed that these were defective diamond films, similar to those deposited on silicon substrates under similar deposition conditions. Comparing the emission characteristics of the films deposited on silicon and on chrome, we conclude that the interface between the back contact and the film is not the current-limiting factor. Moreover, we discuss the importance of the inclusion of sp2-bonded carbons for good electron emission.  相似文献   

15.
The relationship between the electron field emission properties and structure of ultra-nanocrystalline diamond (UNCD) films implanted by nitrogen ions or carbon ions was investigated. The electron field emission properties of nitrogen-implanted UNCD films and carbon-implanted UNCD films were pronouncedly improved with respect to those of as-grown UNCD films, that is, the turn-on field decreased from 23.2 V/μm to 12.5 V/μm and the electron field emission current density increased from 10E−5 mA/cm2 to 1 × 10E−2 mA/cm2. The formation of a graphitic phase in the nitrogen-implanted UNCD films was demonstrated by Raman microscopy and cross-sectional high-resolution transmission electron microscopy. The possible mechanism is presumed to be that the nitrogen ion irradiation induces the structure modification (converting sp3-bonded carbons into sp2-bonded ones) in UNCD films.  相似文献   

16.
The electronic properties of disordered carbon-based materials can be discussed in terms of the clustering of the sp2 carbon phase and delocalization of the electron wave function. In smooth amorphous carbon thin films this results in a mixed phase material of conductive sp2 clusters embedded in an electrically insulating sp3 matrix. The delocalization of the electron wave function associated with the sp2 clusters is shown to play an important role in understanding many of the electronic and optical properties of the films. It is demonstrated that the extent of the electron delocalization and clustering can be estimated using magnetic resonance methods. Evidence for delocalization in a range of carbon-based materials such as diamond-like carbon thin films produced by chemical vapour deposition, nanostructured carbon produced by pulsed laser ablation and ultrananocrystalline diamond is presented.  相似文献   

17.
DLC films were deposited on silicon and quartz glass substrates by pulsed discharge plasma chemical vapor deposition (CVD), where the plasma was generated by pulsed DC discharge in H2–CH4 gas mixture at about 90 Torr in pressure, and the substrates were located near the plasma. The repetition frequency and duty ratio of the pulse were 800 Hz and 20%, respectively. When CH4 / (CH4 + H2) ratio, i.e. methane concentration (Cm), increased from 3 to 40%, C2 species in the plasma was increased, and corresponding to the increase of C2, deposition rate of the film was increased from about 0.2 to 2.4 μm/h. The absorption peaks of sp3C–H and sp2C–H structures were observed in the FT-IR spectra, and the peak of sp2C–H structure was increased with increasing Cm, showing that sp2 to sp3 bonding ratio was increased when Cm was increased. Corresponding to these structural changes due to the increase of Cm, optical band gap (Eg) was decreased from 3 to 0.5 eV continuously when Cm was increased from 3 to 40%.  相似文献   

18.
The effect of single nanosecond laser pulse irradiation on the microstructure and field emission (FE) properties of carbon films is studied. Amorphous carbon films were exposed to a single pulse of a 248 nm Excimer laser with pulse width of 23 ns. Microstructural changes of the films were investigated by Raman spectroscopy, transmission electron microscopy and electron energy loss spectroscopy. FE study was conducted in a parallel plate configuration. It was found that the landscape of the FE properties is not directly correlated to the laser energy in a simple way, whereas low energy laser irradiation (<117 mJ/cm2) leads to a lower emission threshold field due to the formation of sub-nanometer conductive sp2 clusters within the insulating sp3 matrix. A medium energy range (117–362.5 mJ/cm2) would actually reduce field enhancement and increase the threshold field because of the increased size of the same sp2 clusters. Interestingly, a much higher laser energy (>362.5 mJ/cm2) would reverse this effect by forming multiple continuous conductive sp2 channels and thereby reduce the threshold field sharply again.  相似文献   

19.
Thin titanium dioxide films, deposited using RF PECVD and sol–gel techniques, were studied comparatively with respect to their bactericidal as well as self-cleaning properties. The effect of the deposition process on film morphology, chemical and crystalline structure, bactericidal activity and hydrophilic properties was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), surface profilometry, optical microscopy and contact angle measurements. It was found that the bactericidal activity of amorphous TiO2 films, produced using the RF PECVD method, as either comparable to or better than those of crystalline (anatase) films deposited by means of the sol–gel technique. One reason for such advantageous behavior of plasma deposited materials is thought to be their substantially higher surface roughness, as revealed by AFM measurements. The hydrophilic effect, induced with UV irradiation, was strongest in the case of sol–gel films, but the RF PECVD synthesized coatings were found to be only slightly less hydrophilic. The conclusion follows that both sol–gel and RF PECVD techniques are equally capable of producing titanium dioxide films of high photocatalytic quality.  相似文献   

20.
Synthesis of undoped and doped tetrahedral amorphous carbon (ta-C) films has been achieved using magnetic field filtered plasma stream system in an ambient gas of pure Ar and Ar with N2, respectively. The optical and electrical properties of these films as a function of the substrate bias voltages (Vb) or nitrogen partial pressures (PN) have been studied using UV-visible optical absorption spectroscopy, Fourier-transform infra-red spectroscopy (FTIR) and measurements of electrical conductivity. The results show that ta-C films with a high sp3 fraction were formed when the Vb was in the range of −10 to −50 V. The optical band gap of such ta-C films was found to be larger than 3 eV. The incorporation of nitrogen into the ta-C films deposited at low PN (PN<25%), results in a slight drop in activation energy, which indicates that there is evidently some doping effect of nitrogen. The configurations of N atoms in ta-C network are identified and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号