首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Removal of denitrifying phosphorus was verified in a laboratory anaerobic/anoxic sequencing batch reactor (A/A SBR). The results obtained demonstrated that the anaerobic/anoxic strategy can enrich the growth of denitrifying phosphorus removing bacteria (DPB) and take up phosphate under anoxic condition by using nitrate as the electron acceptor. The phosphorus removal efficiency was higher than 90% and the effluent phosphate concentration was lower than lmg·L-1 after the A/A SBR was operated in a steady-state. When the chemical oxygen demand(COD) of influent was lower than 180mg·L-1, the more COD in the influent was, the higher efficiency of phosphorus removal could be attained under anoxic condition. However, simultaneous presence of carbon and nitrate would be detrimental to denitrifying phosphorus removal. Result of influence of sludge retention time (SRT) on denitrifying phosphorus removal suggested that the decrease of SRT caused a washout of DPB and consequently the enhanced biological phosphorus  相似文献   

2.
3.
Sequencing coagulation–photodegradation over ZnO micro/nanoflowers was assessed for Malachite Green (MG) dye removal and followed by the MG-containing textile wastewater treatment. The ZnO micro/nanoflowers were prepared using a facile reflux route and analyzed by various characterization techniques. The flower-like morphological structures of ZnO were witnessed through microscopy analyses. X-ray diffraction findings showed that the prepared ZnO samples were highly crystalline with hexagonal wurtzite structure. The operational parameters including type of coagulant, coagulant dosage, solution pH, photocatalyst dosage and light power exerted their individual influences on the removal of MG dye. The CaCO3 was the best coagulant among the three coagulants tested due to its high formation of precipitates and adsorption of cationic dye molecules. Using CaCO3 as a coagulant, 88.3% MG removal was obtained at coagulant dosage of 160?mg and solution pH of 9.0. Complete removal of MG was found with 0.5?g?L?1 ZnO micro/nanoflowers and 105?W light power. The kinetic analysis showed that a Langmuir?Hinshelwood model was in good agreement with dye removal data. Moreover, a complete removal of MG dye and 80.0% of chemical oxygen demand removal over sequencing coagulation–photodegradation were observed for MG-containing textile wastewater treatment. The sequencing coagulation–photodegradation process using ZnO micro/nanoflowers indicated much promise to be an attractive method for textile effluent treatment applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号