首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
空间光调制器(SLM)是一种对光波的光场分布进行调制的元件。它广泛应用于光信息处理、光束变换和输出显示等诸多应用领域。随着高分辨率空间光调制器在光学显微成像系统中的应用,大大提高了显微振幅和相位样品显微成像的分辨率和对比度,不仅能够实现各种传统的相位显微技术,而且能够灵活地以更复杂的相位调制方式实现新的显微成像。在光学显微系统中,SLM不仅用以控制样品照明光束,同时能作为空间傅里叶滤波器用于成像光路,综述了SLM在光学显微系统中的多种灵活应用。  相似文献   

2.
刘禹彤  李妍  金璐  汤化旭  王舜  吴雨聪  冯悦姝 《红外与激光工程》2023,52(4):20220461-1-20220461-8
显微成像技术作为研究细胞和生物组织的主要工具,对生物医学的发展起到了极大的推动作用。生物样本的复杂化和生物医学领域对时间和空间分辨率的多样化需求决定了单一功能生物成像系统应用的局限性。为满足生物医学领域的多样化需求,解决成像质量与成像时间之间的矛盾,设计了一种基于深度学习的多分辨显微关联成像系统。该系统通过对显微镜进行硬件设计改造和软件处理,将深度学习与关联成像技术有效结合,当采样率仅为60%时,成像系统能够较好地恢复图像细节,大幅降低欠采样带来的噪声,同时显著提升系统成像的时间分辨率。另外,为了满足所设计的小型多分辨显微关联成像系统的实际需求,采用基于重参数化思想的超高效轻量超分网络,在资源受限的设备下实现实时高质量成像。所提出的成像系统可以在保证成像质量的同时显著缩短成像时间和减少内存占用。不同类型生物样本和分辨率板的测试结果进一步表明了系统的鲁棒性和抗噪性能,研究结果对生物医学领域具有重要意义。  相似文献   

3.
李怡霏  何木斌  吴天翔  周静  冯哲  钱骏 《红外与激光工程》2022,51(11):20220494-1-20220494-18
共聚焦显微镜具有较高的空间分辨率和信号背景比,能对生物样品进行三维层析成像,在医学与生物学领域有着广泛的应用。近红外二区(NIR-II,900~1 880 nm)波段的光在生物组织中具有适中的吸收、较低的散射,以及非常弱的生物组织自发荧光,因此,NIR-II荧光活体成像具有大深度、高对比度等优势。点激发、点探测的NIR-II共聚焦显微技术结合了上述二者的优势,在大深度生物成像中具有高空间分辨率和高信号背景比等优点,因此在生物医学领域得到了广泛应用。此综述将从NIR-II共聚焦显微技术的原理出发,阐述其发展进程、以及基于此项技术开展的生物医学成像应用,探讨NIR-II共聚焦显微技术未来的改进和发展方向。  相似文献   

4.
周小康  朱秋煜  饶鹏  陈忻 《红外》2017,38(10):1-6
随着图像传感技术和数字处理技术 在航天领域的广泛应用,空间成像技术得到了迅速发展。一方 面,空间任务受到复杂空间环境的影响;另一方面,大视场、高 分辨率空间成像的需求越来越迫切,然而传统的空间成像技术难 以满足要求。因此,空间操控全景成像技术日趋成为该领域的研究热 点。这项技术主要涉及空间全景成像系统和 空间操控系统。首先介绍了国内外空间全景操控成像 技术的发展概况;然后根据空间全景成像系统的组成原理对空 间全景摄像机的成像模型进行了简要说明,并对空间全景成 像的标定、拼接以及融合方法进行了分类和分析;最后对 空间操控系统进行了阐述,并对该技术未来的发展趋势进行了 展望。  相似文献   

5.
光学显微镜是生物医学研究必不可少的工具,其中双光子显微成像技术具有大深度三维显微成像功能,被认为是深层生物组织研究的首选工具。但是,在双光子成像系统使用过程中,光学系统的装配偏差、光学元件不理想以及生物样品的不均匀性都会在成像过程中引入像差,从而降低成像质量。通过在双光子显微成像系统中引入自适应光学技术,可实现对像差的有效校正,从而提高成像的分辨率、深度和视场。介绍了双光子显微成像中的像差来源和特点,概述了自适应光学技术中不同的探测和校正方法,综述了近年来自适应光学技术在双光子显微成像中不同的应用成果,最后对自适应光学在双光子显微成像中的发展进行了展望。  相似文献   

6.
光谱共焦显微技术结合了共焦显微镜的高空间分辨率和光谱分析的高波长分辨率,凭借精度高、适用性强、无损检测等特性,广泛应用于工业生产、生物医疗和半导体芯片等领域。首先介绍点光谱共焦系统的原理,指出点光谱共焦检测效率低的缺点。其次,针对光谱共焦显微技术的关键性能指标改善,阐述了在光源、色散物镜和光谱信号检测等方面所取得的主要成果,并对各类光源进行定性对比。随后展示光谱共焦显微技术的扫描方法,梳理了相关研究进展,并总结了相关方法的优点和缺点。最后,展望光谱共焦显微技术未来的发展趋势。  相似文献   

7.
熊子涵  宋良峰  刘欣  左超  郜鹏 《红外与激光工程》2022,51(11):20220536-1-20220536-18
荧光显微镜具有对样品损伤小、可特异性成像等优点,是生物医学研究的主流成像手段。随着人工智能技术的快速发展,深度学习在逆问题求解中取得了巨大成功,被广泛应用于诸多领域。近年来,深度学习在荧光显微成像中的应用掀起了一个研究热潮,为荧光显微技术发展提供了性能上的突破与新思路。基于此,首先介绍了深度学习的基本网络模型,然后对基于深度学习的荧光显微成像技术在荧光显微的空间分辨率、图像采集及重建速度、成像通量和成像质量提升方面的应用进行阐述。最后,对目前深度学习在荧光显微成像中的研究进行总结与展望。  相似文献   

8.
传统光学显微镜的视场与空间分辨率是相互制约的,如何突破这一限制,同时能兼得高分辨率和大视场的高通量成像,成为当前显微成像技术领域的主要研究方向之一。该科学问题的突破将有助于加速科学研究、提高生产制造能力、为医疗辅助诊断提供新工具。本文介绍比较了大孔径物镜制造与曲面探测技术、扫描拼接技术、傅里叶叠层显微成像技术、宽场结构光照明技术和无透镜片上显微成像技术在内的5种高通量显微成像技术。分析了高通量显微成像技术研究的当前现状、所面临的问题以及未来的发展趋势。分析指出,计算光学成像技术正逐渐成为目前高通量显微技术的主要手段,通过计算绕过或者突破光学系统的物理限制将开辟高通量显微成像新时代。  相似文献   

9.
双光子荧光(two-photon fluorescence,TPF)显微成像技术借助荧光探针实现样品中被标记成分的特异性成像,具有天然的三维层析能力、高成像深度与空间分辨率、以及更小的光漂白与光损伤,已经发展成为化学、医药学和生命科学领域的一项重要研究工具。文中通过分析高斯光束复振幅在空间中的分布,推导出TPF信号的纵向与径向分布公式,以此估算出文中的TPF显微成像系统的横向分辨率为453 nm,纵向分辨率为2.087μm。使用飞秒激光器作为激发光源,搭建了TPF显微成像系统。在800 nm波长的飞秒脉冲激发下,测量了罗丹明B溶液的TPF光谱,从而选择636~703 nm作为显微成像的荧光探测窗口。随后开展了对罗丹明B染色的小鼠大脑切片的TPF显微成像实验研究,利用断层扫描成像的方式获得了小鼠大脑切片在0~14μm深度内的荧光强度分布。通过三维重构完成了对生物样品的三维立体成像,获得了小鼠大脑中灰质与白质在不同深度的分布情况,实验结果证明了搭建的显微成像系统具有优异的成像深度与空间分辨能力。  相似文献   

10.
光学显微成像技术可以用来观察微小物体的结构细节,但在生物样品的显微成像领域中,像差的存在使得任何显微成像技术的成像质量都无法达到理论预期。为了解决这一问题,自适应光学技术被应用于不同类型的显微成像系统中进行像差的探测和校正。着重总结了自适应宽场高分辨率显微成像技术的研究动态,阐明了数字全息自适应光学技术和非相干数字全息自适应光学技术的特点、优势以及存在的问题。  相似文献   

11.
荧光超分辨显微技术自20世纪90年代诞生以来,经历了多代创新与发展,其空间分辨率已经远超衍射极限,横向分辨率能够达20 nm以下,可以实现分子尺度的生物成像与动态追踪。新一代超高分辨率显微技术的产生得益于传统超分辨技术的深度发展和结合创新。详细介绍横向分辨率在亚20 nm尺度的新一代荧光超分辨显微技术,并阐述其与传统超分辨原理的联系与区别。此外,针对分辨率的限制因素,就光学系统、扫描策略和样品制备等方面进行探讨,并展望高分辨率荧光显微技术在生物医学领域中的应用前景和发展方向。  相似文献   

12.
毛珩  Tao Louis  陈良怡 《红外与激光工程》2016,45(6):602001-0602001(7)
荧光显微成像技术是开展微观生命科学研究的重要手段和工具,使用该技术可以观察生物体内的精细结构、动态追踪生物体内组织、细胞、细胞核、蛋白、小分子等不同尺度的生命活动过程。其中,研究深层组织高时空分辨率荧光显微成像技术,是当前成像领域一个前沿问题。应用自适应光学技术实时补偿经由不透明散射、非均匀生物组织传播而引入的复杂波前畸变已被证实是实现上述技术的一种有效途径。文中首先归纳了深层动态荧光显微成像的需求和特点,随后分别介绍了自适应光学技术近几年在共聚焦显微成像、随机光学重构显微成像、光激活定位显微成像、受激辐射光淬灭显微成像、双光子/多光子激发显微成像中的相关应用,并对今后的研究问题和发展方向提出展望。  相似文献   

13.
共聚焦荧光寿命显微系统   总被引:3,自引:2,他引:1  
提出一种集成了激光扫描共聚焦显微术和荧光寿命测量技术的共聚焦荧光寿命显微系统,用于观察生物细胞等样品微观结构以及对环境条件信息成像。通过配合使用空心角锥棱镜和平面反射镜简化光路调整,成功搭建系统。实验结果显示,系统的空间分辨率能达到约180nm,荧光寿命时间分辨率达到约20ps。本文系统能为生物细胞学、材料学等学科研究提供直观途径。  相似文献   

14.
扫描电声显微镜(scannmg electron acoustic microscoPe)问世以来,作为一种新的显微成像手段,在众多的材料研究领域得到了广泛的应用,并日益显露其独特的成像本领。为此,我们对原建立的SEAM系统,通过增强电子束流强度和改善调制电路,使得系统的信噪比和空间分辨率大为提高。  相似文献   

15.
《红外技术》2017,(11):973-978
红外显微热成像系统基于红外热成像、红外图像处理和光学显微技术,能够分析微小物体或局部细节的温度变化,具有无损检测、灵敏度高等优点。对红外显微热成像系统的研究背景进行了概括,介绍了它的基本原理和系统组成,总结了红外显微热成像系统的研究现状及其在微电子器件检测、医学诊断、科学实验研究等方面的应用进展,对其存在的问题进行了分析,并且展望了红外显微热成像系统的未来发展趋势。  相似文献   

16.
在生物组织工程的应用中需要有对生物结构标记的三维、纵向评估。一般来说,这些生物组织的结构通常是几毫米厚和浑浊的,因此对图像成像有很大挑战性,且经典荧光显微技术不能满足于其需要。介观荧光分子成像系统是一种新兴的成像系统,该系统基于介观荧光分子层析方法,它填补了显微荧光分子成像技术和宏观荧光分子成像技术之间的空白。为提升介观荧光分子重建的性能,本文主要基于光学原理对光学系统的配置参数进行了优化和改进,包括探测器布局、非耦合或耦合的扫描模式,并对介观荧光分子成像系统的三维成像性能进行了评价和对比。结果表明,本文设计的耦合式背光介观荧光分子层析成像(mesoscopic fluorescence molecular tomography imaging,MFMT)系统能够很好地提升重建性能,获得高质量的重建结果。  相似文献   

17.
光学相干显微术是一种新的成像技术,它能对高散射介质,如生物组织进行非介入的快速成像,其分辨率远大于B超,因而在活体生物组织的微结构分析和疾病诊断方面有重要的应用价值。  相似文献   

18.
拉曼显微成像技术无需样本制备,具有无损、无创、对水溶液不敏感的优点,可在微米或纳米尺度下表征样本的生化组分及分布,成为生命科学领域重要的研究工具。随着对复杂生物样本研究的不断深入,拉曼显微成像也被期待能够实现对生物样本中的分子组成与分布的动态立体观测。首先,系统性地梳理近年来三维拉曼显微成像技术的研究进展,包括基于自发拉曼散射、相干拉曼散射、表面增强拉曼散射以及拉曼标签的不同三维成像方法的技术手段、改进策略与实验结果。然后,总结了不同成像技术在细胞生物学、发育生物学等方面的应用进展。最后展望了不同三维拉曼显微成像技术在生物医学光学显微成像技术应用中所面临的挑战和发展前景。  相似文献   

19.
提出空间编码复用散斑技术来实现单个单像素探测器对多个物体信息的同时探测获取。使用空间编码复用散斑对多个物体信息进行照明,使用单像素探测器对回波信号进行探测,利用关联算法获取混叠多物体信息,然后用空间编码信息对随机采样的多个物体信息进行解码,最后采用压缩感知技术对完整的多个物体信息进行复原。使用该技术分别实现了对多空间、多光谱和多偏振信息的同时探测获取,实验结果证实了该技术的有效性,该技术可有效降低系统数据量,提高关联成像系统的成像效能。  相似文献   

20.
光电成像系统受到衍射极限和像元分辨率的制约,但研究者们从未停止过脚步来突破这一限制。本文介绍了近年来开展的各种超分辨成像方法和技术,包括应用于荧光显微成像的受激发射损耗技术、结构光照明技术、光激活定位技术与随机光学重构超分辨成像技术;可应用于显微系统、光存储与眼底成像的光瞳滤波技术与径向偏振光超分辨聚焦技术;应用于空间探测的合成孔径技术、光子筛成像技术、超振荡透镜技术、亚像元技术与焦平面编码技术。主要讨论了以上超分辨方法的原理、实现手段与目前发展水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号