首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of CH3OH with Cu clusters deposited on ZnO films grown on a Zn foil as well as on a ZnO(0001)-Zn crystal, has been examined by X-ray photoelectron spectroscopy. On clean Cu clusters, reversible molecular adsorption or formation of CH3O is observed. However if the Cu clusters are pretreated with oxygen, both CH3O and HCOO- species are produced. Model Cu/ZnO catalyst surfaces, containing both Cu1+ and Cu0 species, show interesting oxidation properties. On a Cu0-rich catalyst surface, only CH3O species is formed on interaction with CH3OH. On a Cu1+-rich surface, however, HCOO- ion is the predominant species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Cu K-absorption edge and EXAFS measurements on binary Cu/ZnO and ternary Cu/ ZnO-Al2O3 catalysts of varying compositions on reduction with hydrogen at 523 K, show the presence of Cu microclusters and a species of Cu1+ dissolved in ZnO apart from metallic Cu and Cu2O. The proportions of different phases critically depend on the heating rate especially for catalysts of higher Cu content. Accordingly, hydrogen reduction with a heating rate of 10 K/min predominantly yields the metal species (>50%), while a slower heating rate of 0.8 K/min enhances the proportion of the Cu1+ species ( 60%). Reduced Cu/ZnO-Al2O3 catalysts show the presence of metallic Cu (upto 20%) mostly in the form of microclusters and Cu1+ in ZnO as the major phase ( 60%). The addition of alumina to the Cu/ZnO catalyst seems to favour the formation of Cu1+/ZnO species.  相似文献   

3.
For the dehydrogenation of cyclohexanol a series of Cu–ZnO/SiO2 catalysts with various Cu to ZnO molar ratios was prepared using the impregnation method, with the loading of copper fixed at 9.5 at.%. The catalysts were characterized by XPS, H2–N2O titration, BET, H2-TPR, NH3-TPD and XRD techniques. The results indicate that the addition of ZnO can improve the dispersion of copper species on reduced Cu–ZnO/SiO2 (CZS) catalysts. Cu0 and Cu+ species were found on the reduced CZS catalysts surface, and the amount of Cu+ increased with the content of ZnO increasing. The addition of ZnO increased the acidity of the CZS catalysts. However, only Cu0 species can be found on the reduced Cu/SiO2 (CS) catalyst surface. According to the reaction results, we found that the selectivity to phenol was related to the amount of Cu+ species, the Cu+ species should be the active sites for the production of phenol, the Cu0 is responsible for cyclohexanol dehydrogenation to cyclohexanone.  相似文献   

4.
A series of Ce1-xCuxO2- mixed oxides were synthesized using a co-precipitation method and tested as catalysts for the steam reforming of methanol. XRD patterns of the Ce1-xCuxO2- mixed oxides indicated that Cu2+ ions were dissolved in CeO2 lattices to form a solid solution by calcination at 773K when x < 0.2. A TPR (temperature-programmed reduction) investigation showed that the CeO2 promotes the reduction of the Cu2+ species. Two reduction peaks were observed in the TPR profiles, which suggested that there were two different Cu2+ species in the Ce1-xCuxO2- mixed oxides. The TPR peak at low temperature is attributed to the bulk Cu2+ species which dissolved into the CeO2 lattices, and the peak at high temperature is due to the CuO species dispersed on the surface of CeO2. The Ce1-xCuxO2- mixed oxides were reduced to form Cu/CeO2 catalysts for steam reforming of methanol, and were compared with Cu/ZnO, Cu/Zn(Al)O and Cu/AL2O3 catalysts. All the Cu-containing catalysts tested in this study showed high selectivities to CO2 (over 97%) and H2. A 3.8wt% Cu/CeO2 catalyst showed a conversion of 53.9% for the steam reforming of methanol at 513K (W/F = 4.9 g h mol-1), which was higher than that over Cu/ZnO (37.9%), Cu/Zn(Al)O (32.3%) and Cu/AL2O3 (11.2%) with the same Cu loading under the same reaction conditions. It is likely that the high activity of the Cu/CeO2 catalysts may be due to the highly dispersed Cu metal particles and the strong metalsupport interaction between the Cu metal and CeO2 support. Slow deactivations were observed over the 3.8wt% Cu/CeO2 catalyst at 493 and 513K. The activity of the deactivated catalysts can be regenerated by calcination in air at 773K followed by reduction in H2 at 673K, which indicated that a carbonaceous deposit on the catalyst surface caused the catalyst deactivation. Using the TPO (temperature-programmed oxidation) method, the amounts of coke on the 3.8wt% Cu/CeO2 catalyst were 0.8wt% at 493K and 1.7wt% at 513K after 24h on stream.  相似文献   

5.
Two series of Cu–Ce–O and Cu–Co–Ce–O catalysts were prepared by co-precipitation method. The prepared catalysts were characterized by XRD, IR, TPR, XPS, BET and ICP-AES. The catalytic activities of the catalysts for low-temperature CO oxidation were evaluated through a microreactor-GC system. TPR results indicate that the addition of cobalt to the Cu–Ce–O can increase the dispersion of copper oxide, and the interaction between cobalt and copper can enhance the reducibility of each other. XPS analysis show that Ce4+, Cu2+, along with Co3O4, are present on the surface of Cu0.4Co0.6Ce4 catalyst. The Co/Cu atomic ratio and the calcination temperature have significant effect on the activities of the catalysts. Compared with Cu1Ce4 catalyst, the Cu0.4Co0.6Ce4 catalyst has better activity and thermal stability.  相似文献   

6.
The hydrogenation of methyl acetate (MA) is one of the important key processes for synthesis of ethanol from syngas. This work reports a highly efficient Cu‐ZnO/SBA‐15 catalyst prepared by facile solid‐state grinding method. Both copper and zinc species were encapsulated in SBA‐15 in high dispersion with the presence of organic template. The mixed homogeneity and interaction between copper and zinc species was enhanced as well with the help of organic template, resulting in the formation of Cu+ species in the reduced catalysts. Moreover, TOFCu(0) linearly increased with the Cu+/Cu0 ratio, indicating that a high proportion of Cu+/Cu0 induced by ZnO should be a key prerequisite to achieve favorable hydrogenation performance. It seems that the Cu+ species originated from Cu‐ZnOx species are more active than that from Cu‐O‐Si species in the activation of MA. These results may provide an inspiration in rational design of Cu‐ZnO‐based catalysts for esters hydrogenation. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2839–2849, 2017  相似文献   

7.
Methanol steam reforming was studied over several catalysts made by deposition of copper and zinc precursors onto nanoparticle alumina. The results were compared to those of a commercially available copper, zinc oxide and alumina catalyst. Temperature programmed reduction, BET surface area measurements, and N2O decomposition were used to characterize the catalyst surfaces. XRD was used to study the bulk structure of the catalysts, and XPS was used to determine the chemical states of the surface species. The nanoparticle-supported catalysts achieved similar conversions as the commercial reference catalyst but at slightly higher temperatures. However, the nanoparticle-supported catalysts also exhibited a significantly lower CO selectivity at a given temperature and space time than the reference catalyst. Furthermore, the turnover frequencies of the nanoparticle-supported catalysts were higher than that of the commercial catalyst, which means that the activity of the surface copper is higher. It was determined that high alumina concentrations ultimately decrease catalytic activity as well as promote undesirable CH2O formation. The lower catalytic activity may be due to strong Cu-Al2O3 interactions, which result in Cu species which are not easily reduced. Furthermore, the acidity of the alumina support appears to promote CH2O formation, which at low Cu concentrations is not reformed to CO2 and H2. The CO levels present in this study are above what can be explained by the reverse water-gas-shift (WGS) reaction. While coking is not a significant deactivation pathway, migration of ZnO to the surface of the catalyst (or of Cu to the bulk of the catalyst) does explain the permanent loss of catalytic activity. Cu2O is present on the spent nanoparticle catalysts and it is likely that the Cu+/Cu0 ratio is of importance both for the catalytic activity and the CO selectivity.  相似文献   

8.
Methanol steam reforming was studied over several catalysts made by deposition of copper and zinc precursors onto nanoparticle alumina. The results were compared to those of a commercially available copper, zinc oxide and alumina catalyst. Temperature programmed reduction, BET surface area measurements, and N2O decomposition were used to characterize the catalyst surfaces. XRD was used to study the bulk structure of the catalysts, and XPS was used to determine the chemical states of the surface species. The nanoparticle-supported catalysts achieved similar conversions as the commercial reference catalyst but at slightly higher temperatures. However, the nanoparticle-supported catalysts also exhibited a significantly lower CO selectivity at a given temperature and space time than the reference catalyst. Furthermore, the turnover frequencies of the nanoparticle-supported catalysts were higher than that of the commercial catalyst, which means that the activity of the surface copper is higher. It was determined that high alumina concentrations ultimately decrease catalytic activity as well as promote undesirable CH2O formation. The lower catalytic activity may be due to strong Cu-Al2O3 interactions, which result in Cu species which are not easily reduced. Furthermore, the acidity of the alumina support appears to promote CH2O formation, which at low Cu concentrations is not reformed to CO2 and H2. The CO levels present in this study are above what can be explained by the reverse water-gas-shift (WGS) reaction. While coking is not a significant deactivation pathway, migration of ZnO to the surface of the catalyst (or of Cu to the bulk of the catalyst) does explain the permanent loss of catalytic activity. Cu2O is present on the spent nanoparticle catalysts and it is likely that the Cu+/Cu0 ratio is of importance both for the catalytic activity and the CO selectivity.  相似文献   

9.
In this work, mechanistic aspects of the partial oxidation of methanol (POM) to hydrogen and carbon dioxide over Cu/ZnO catalysts have been investigated. The data obtained with different catalyst compositions and different Cuo metal surface areas showed that the reaction depends on the presence of both the phases ZnO and Cuo. On the other hand, for catalysts with Cu concentrations in the range 40-60 wt%, the copper metal surface area seems to be the main factor determining the reaction rate. Kinetic isotope effects using CH3OH and CH3OD showed that both C–H and O–H bonds are at least partially involved in the rate-limiting step. TPD experiments with pure Cuo, pure ZnO and the catalyst Cu/ZnO showed that methanol can be activated by both ZnO and copper. On the ZnO surface methanol can form intermediates which in the presence of copper might react and desorb more easily probably via a reverse spillover process. The isotopic product distribution of H2, HD, D2, H2O, HDO and D2O in the temperature-programmed reaction of CH3OD revealed a slight enrichment of the products with H, suggesting that during methanol activation on the ZnO some of the D atoms might be retained by the support. The effect of oxygen partial pressure suggests that oxygen atoms on the copper surface strongly promote methanol activation and H2 and CO2 formation. It is proposed that oxygen atoms participate in methanol activation by the abstraction of the hydroxyl H atom to form methoxide and OHsurf. This OHsurf species rapidly loses H to the surface regenerating the Osurf.  相似文献   

10.
Cu–Zn–Ti catalysts were prepared by coprecipitation method. The calcined and reduced Cu–Zn–Ti catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), and N2 adsorption. The calcined Cu–Zn–Ti catalysts were composed of CuO, ZnO, and amorphous TiO2. There were two kinds of CuO species present in the calcined Cu–Zn–Ti catalyst. At a lower copper content, CuO species interacted with ZnO and TiO2; at a higher copper content, both the surface-anchored and bulk CuO species were present. After reduction, metallic copper (Cuo) appeared in all Cu–Zn–Ti catalysts. Cuo produced by reduction of the surface-anchored CuO favored the deep hydrogenation of maleic anhydride. ZnO and TiO2 had synergistic effect on the catalytic activity of Cu–Zn–Ti catalysts in hydrogenation of maleic anhydride.  相似文献   

11.
A systematic series of model methanol synthesis catalysts was prepared by sequential impregnation of a mesoporous silica material (5 nm average pore size) with an organometallic ZnO precursor which is liquid at room temperature, followed by the infiltration with an aqueous Cu nitrate solution. These catalysts, which contained 14–20 wt.% Cu and 1–5 wt.% Zn, were characterized by N2O reactive chemisorption, by EXAFS and by measuring their methanol synthesis activities. It was observed that the formation of confined, nanocrystalline ZnO prior to copper infiltration is of major importance for the development of catalyst activity. Severe reduction of properly prepared catalysts (10% CO/H2, 673 K, 15 min) leads to the emergence of a new feature in the ZnK EXAFS spectrum which was assigned to a Cu neighbour by combined evidence from the ZnK EXAFS and XANES regions. The zinc oxide component was partially reduced as well, but Zn(0) was not formed to any significant extent. Catalysts which developed this Cu–Zn2+ interaction under severe reduction were superior in terms of methanol synthesis rate per m2 Cu surface area to a sample which did not exhibit this feature.  相似文献   

12.
A series of Cs promoted copper oxide catalysts were prepared by co-precipitation method and tested for the direct decomposition of nitrous oxide (N2O). The Cs promoted catalysts were more active particularly with a molar ratio of Cs/Cu at 0.1 compared to bulk CuO. Methods of XRD, BET, XPS, H2-TPR, and N2O-TPD were used to characterize these catalysts to evaluate structure activity relationship. The characterization results indicated that the addition of Cs could improve the reduction of Cu2+–Cu0 by facilitating the desorption of adsorbed oxygen species, during the N2O decomposition. The influences of oxygen and steam on N2O decomposition over these catalysts were also studied.  相似文献   

13.
The physico-chemical and catalytic properties of CuO–ZnO–Al2O3, synthesised by sol–gel process (SG), impregnation method (IMP) and a combination of both preparative procedures (ISG), were comparatively studied. Samples were characterised with thermogravimetric-differential thermal analysis (TG–DTA), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques and oxygen chemisorption. XPS study was not consistent with the bulk findings and revealed the presence of Cu2+, Cu+ and/or Cu0 species at the catalysts surface. Surface analysis revealed also that copper enrichment occurred mainly at the surface of SG and IMP solids. The reducibility of the mixed oxides catalysts was always modified with respect to that of pure copper oxides phases and the reduction of CuO was markedly affected by the presence of ZnO–Al2O3. Temperature programmed reduction (H2-TPR) analysis showed that the temperature corresponding to maximum reduction rate of copper oxide was ca. 256 °C for IMP sample and ca. 296 °C for both SG and ISG solids. These latter showing a high resistance to reduction suggest a strong interaction of copper species with ZnO–Al2O3, limiting thus copper particles sintering. CuO particle size was found to be ca. 20 nm for both SG and ISG solids and ca. 40 nm for IMP catalysts. Besides, at 300 °C SG and ISG samples showed superior amount of reversible O2 uptake with respect to IMP solids. Catalytic activity of CuO–ZnO–Al2O3 was measured with bio-ethanol steam reforming reaction. SG catalysts exhibited both high selectivity to hydrogen and high stability with time on stream than IMP and ISG catalysts. This was attributed both to the particles size of copper species, their amount on the catalytic surface and to their strong interaction with ZnO–Al2O3.  相似文献   

14.
The CuO dispersed on ZnCr2O4 catalysts derived from Cu–Zn–Cr hydrotalcite like layered double hydroxide precursors with varying Zn/Cr ratios have been synthesized, characterized by BET—Surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR), electron spin resonance (ESR), N2O titrations and the activities were evaluated for single step dimethyl ether (STD) synthesis from syngas. It is observed that the copper species were in highly dispersed state over Cu–ZnO–Cr2O3 at high Zn/Cr ratios while the copper cluster were present at low Zn/Cr ratios. The ESR analysis revealed signals due to isolated Cu2+ at high Zn/Cr ratios and clustered Cu2+ at low Zn/Cr ratio in fresh catalysts and only Cr3+ species in used catalysts. The TPR results indicated that the reduction peak shifted to high temperatures with an increase in chromium content due to large copper crystallites, which was supported by XRD analysis. The conversion of syngas to DME was well correlated with the copper metal surface areas, indicating that STD synthesis can be controlled by methanol synthesis rate.  相似文献   

15.
Using TiO2 as carrier, CuO/TiO2 catalysts with different CuO loading were prepared by the impregnation method. The catalytic activities in NO+CO reaction were examined with a micro-reactor gas chromatography reaction system and the methods of TPR, XPS and NO-TPD. It was found that the catalytic activities were affected by pretreatment atmosphere, i.e. H2 atmosphere > reduction–reoxidation > 10%CO/He > reaction gas (fresh sample). NO decomposition was better by low-valence Cu species than by high-valence Cu species, i.e. Cu0>Cu+>Cu2+. The XPS results indicated that Cu species on CuO/TiO2 were Cu0, Cu+, normal Cu2+(Cu2+(I)) and chain-structured Cu2+(Cu2+(II)) as –Cu–O–Ti–O–. The activities of Cu2+(II) were much higher than that of Cu2+(I), but both species were very unstable in the reaction atmosphere and easily reduced by CO, which accounted for the variable activities of fresh catalysts with increasing reaction temperature. In NO+CO reaction, the redox process was a cycle of Cu+–Cu2+(I) at low reaction temperature but was a cycle of Cu0–Cu+ at high reaction temperature. As shown by NO-TPD, high catalytic activities could be attributed to the following factors, e.g. oxygen caves on the catalyst’s surface after pretreatment with H2 and reduction–reoxidation, formation of Cu0 after pretreatment with H2, and increment of Cu species dispersion and formation of Cu2+(II) after pretreatment with reduction–reoxidation.  相似文献   

16.
《Journal of Catalysis》2005,229(1):136-143
The structure of Cu/SiO2 and Cu/ZnO/SiO2 catalysts was studied after reduction at 450–1300 K. The influence of the ZnO promoter on the exposed Cu surface area and metal cluster size was determined by N2O chemisorption and X-ray diffraction. After reduction at 450 K, the metal surface area amounted to 9 m2/gcat for both catalysts. Oxygen uptake during N2O chemisorption increased significantly up to reduction temperatures of 800–900 K. This increase was most prominent for the ZnO-promoted catalyst, although no oxygen uptake was observed for a similarly treated ZnO/SiO2 sample. The behaviour of the promoted catalyst can be explained by formation of Zn0, surface alloying, and segregation of ZnOx species on top of Cu clusters. The high thermostability of the catalysts was confirmed by in situ XRD measurements. The Cu crystallite size in both catalysts was about 4 nm, and did not increase when the reduction temperature was raised to 1100 K for 1 h.  相似文献   

17.
This paper describes an investigation on CuO and CuO-ZnO catalysts supported on CeO2 and CeO2-La2O3 oxides, which were designed for the low temperature water-gas shift reaction (WGSR). Bulk catalysts were prepared by co-precipitation of metal nitrates and characterized by energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), surface area (by the BET method), X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption near edge structure (XANES). The catalysts' activities were tested in the forward WGSR, and the CuO/CeO2 catalyst presented the best catalytic performance. The reasons for this are twofold: (1) the presence of Zn inhibits the interaction between Cu and Ce ions, and (2) lanthanum oxide forms a solid solution with cerium oxide, which will cause a decrease in the surface area of the catalysts. Also the CuO/CeO2 catalyst presented the highest Cu content on the surface, which could influence its catalytic behavior. Additionally, the Cu0 and Cu1+ species could influence the catalytic activity via a reduction-oxidation mechanism, corroborating to the best catalytic performance of the Cu/Ce catalyst.  相似文献   

18.
K.C. Waugh 《Catalysis Letters》1999,58(2-3):163-165
Fujitani and Nakamura recently reported on the effect of ZnO on Cu/ZnO methanol synthesis catalysts (Catal. Lett. 56 (1998) 119). Having measured the methanol synthesis activity of a series of Cu/ZnO catalysts of different Cu/ZnO ratios, they reported a linear relationship between the copper metal area and the methanol yield (implying a fixed value of the copper specific activity) and paradoxically they also reported a volcano-type relationship between the copper specific activity in methanol synthesis and the ZnO content. This paradox is resolved by showing that their Cu/ZnO catalysts fall into two groups: (i) the low-surface-area copper catalysts which have a specific activity of 10 mg CH3OH/m2-Cu h and (ii) the high-surface-area copper catalysts which have specific activity of 14.8 mg CH3OH/m2-Cu h. These different specific activities derive from different surface morphologies of the copper in these catalysts. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
Gold nanoclusters on TiO2 powder were prepared from adsorbed AuIII(CH3)2(C5H7O2) (dimethyl acetylacetonate gold(III)) and characterized by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. The samples were tested as catalysts for CO oxidation at 298 K and atmospheric pressure and characterized by EXAFS and XANES with the catalysts in the working state. The XANES results identify Au(III) in the initially prepared sample, and the EXAFS data indicate mononuclear gold complexes as the predominant surface gold species in this sample, consistent with the lack of Au–Au contributions in the EXAFS spectrum. The mononuclear gold complex is bonded to two oxygen atoms of the TiO2 surface at an Au–O distance of 2.16 Å. Treatment of this complex in He or in H2 at increasing temperatures led to formation of metallic gold clusters of increasing size, ultimately those with an average diameter of about 15 Å. The data demonstrate the presence of metallic gold clusters in the working catalysts and also show these clusters alone are not responsible for the catalytic activity.  相似文献   

20.
《Ceramics International》2023,49(8):12518-12528
In China, a large amount of serpentine tailings and waste printed circuit boards (WPCBs) are produced every year. Serpentine tailings contain about 43% SiO2 and WPCBs contain about 20% Cu. Reusing their resources can not only solve the problem of environmental pollution, but also produce certain economic benefits. In this study, waste-based SiO2 support, waste-based Cu–Cu2O and Cu–Cu2O/SiO2 photocatalyst were prepared using serpentine tailings and WPCBs as Si and Cu sources. The waste-based SiO2 of 750 nm particle size was obtained by precipitation of 0.7 mol/L Na2SiO3 solution from the serpentine tailings and its specific surface area reached 57.72 m2/g after 600 °C calcination. Cu and the waste-based Cu–Cu2O were loaded on the waste-based Cu2O and SiO2 support, respectively, and the phase structure of the catalysts has not changed by the characterization of SEM, XRD and XPS. The activity of the photocatalytic reduction of Cr (VI) with the waste-based catalysts showed in the following order: Cu2O < Cu2O/SiO2<Cu–Cu2O < Cu–Cu2O/SiO2, inferring by the investigation of photoelectric properties that Cu prevented the recombination of Cu2O electron-hole pairs, the Cu–Cu2O dispersed on SiO2 support surface to obtain a higher specific surface area. The waste-based Cu–Cu2O/SiO2 photocatalyst showed no obvious deactivation after 5 cycles. The mechanism revealed that photogenerated electrons are the major reactive species for the photodegradation of Cr (VI). The study indicates that the waste-based Cu–Cu2O/SiO2 is potentially a developed, low-cost catalyst from sustainable resources. The production of Cu–Cu2O/SiO2 photocatalyst by using WPCBs and serpentine tailings represents the potential usage of waste into valuable material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号