首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lung is one of the most common sites for cancer metastasis. Collagens in the lung provide a permissive microenvironment that supports the colonization and outgrowth of disseminated tumor cells. Therefore, down-regulating the production of collagens may contribute to the inhibition of lung metastasis. It has been suggested that miR-29 exhibits effective anti-fibrotic activity by negatively regulating the expression of collagens. Indeed, our clinical lung tumor data shows that miR-29a-3p expression negatively correlates with collagen I expression in lung tumors and positively correlates with patients’ outcomes. However, suitable carriers need to be selected to deliver this therapeutic miRNA to the lungs. In this study, we found that the chemotherapy drug cisplatin facilitated miR-29a-3p accumulation in the exosomes of lung tumor cells, and this type of exosomes exhibited a specific lung-targeting effect and promising collagen down-regulation. To scale up the preparation and simplify the delivery system, we designed a lung-targeting liposomal nanovesicle (by adjusting the molar ratio of DOTAP/cholesterol–miRNAs to 4:1) to carry miR-29a-3p and mimic the exosomes. This liposomal nanovesicle delivery system significantly down-regulated collagen I secretion by lung fibroblasts in vivo, thus alleviating the establishment of a pro-metastatic environment for circulating lung tumor cells.  相似文献   

2.
3.
T-2 and HT-2 toxins belong to mycotoxins which are found in human foods and animal chow. We investigated the toxicity and oxidative stress induced by T-2/HT-2 in broilers and chicken hepatocytes. Maize cultures of Fusarium poae was fed to broilers for 42 d, and the physiological index, biochemical index and expression of mRNAs related to oxidative stress were analyzed. Chicken hepatocytes were treated with different levels of T-2/HT-2, and the following parameters were detected: cell viability, GSH and MDA concentration, LDH leakage, activities of ALT/AST, ROS, GSH-PX, SOD and CAT, and expression of mRNA related to oxidative stress. In vivo, high levels of mycotoxins (4 mg/kg T-2 and 0.667 mg/kg HT-2) in feed caused significant reductions in body weight, weight gain, and serum total protein, and significant increases in feed conversion ratio, ALP, ALT/AST activities, and expression of mRNA related to oxidative stress. In vitro, cells treated with T-2/HT-2 showed reductions of GSH concentration and significant increases in LDH leakage, ALT/AST ROS, GSH-PX, SOD and CAT activities, MDA concentration, and expression of mRNA related to oxidative stress. Consequently, F. poae culture material and T-2/HT-2 induced toxicity and oxidative stress in vivo and in vitro, respectively.  相似文献   

4.
CYP2B6 is a human microsomal cytochrome P450 enzyme with broad substrate selectivity. CYP2B6 is the only functional member of the human CYP2B gene subfamily, which differs from the situation in rodents, such as mouse, where multiple functional Cyp2b genes are expressed. Recent studies with Cyp2b knockout or knockdown mouse models have yielded insights into the in vivo roles of mouse CYP2B enzymes in drug disposition and xenobiotic toxicity. A CYP2B6-humanized mouse model (CYP2A13/2B6/2F1-transgenic/Cyp2abfgs-null), which expresses human CYP2B6 in the liver, and human CYP2A13 and CYP2F1 in the respiratory tract, but not any of the mouse Cyp2b genes, has also been established. In the CYP2B6-humanized mouse, the CYP2B6 transgene is expressed primarily in the liver, where it was found to be active toward prototype CYP2B6 substrate drugs. The regulatory elements of the CYP2B6 transgene appear to be compatible with mouse nuclear receptors that mediate CYP2B induction. Therefore, the CYP2B6-humanized mouse is a valuable animal model for studying the impact of CYP2B6 expression or induction on drug metabolism, drug efficacy, drug-drug interaction, and drug/xenobiotic toxicity. In this mini-review, we provide a brief background on CYP2B6 and the Cyp2b-knockout and CYP2B6-humanized mice, and discuss the potential applications and limitations of the current models.  相似文献   

5.
Parabens are widely used as antibacterial agents, which are concerned recently in the relationship between the use of parabens and reproductive toxicity. So that reassessment of the risk of parabens is needed. In this study, one of parabens, n-butylparaben (n-BP) was orally administered to pregnant Wistar rats (0, 64, 160, 400 and 1000 mg/kg/day) from gestation day (GD) 7 through postnatal day (PND) 21. Reduced anogenital distance (AGD) and delayed preputial separation (PPS) were observed in the male offspring. The weights of the testes were significantly reduced at PND 21–90. The weights of the epididymides were significantly reduced at all monitoring points, except PND 35. Seminal vesicle weights were significantly reduced on PND 21. Serum testosterone (T) was significantly decreased, especially on PND 49. The levels of 17β-estradiol (E2) showed an increase at each of the tested points except on PND 180. Serum luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels in the n-BP treated groups were lower on PND 21, 35 and 49 but elevated on PND 90 compared to control levels. n-BP reduced epididymal cauda sperm counts and daily sperm production in a dose-dependent manner; this difference was statistically significant at exposure groups of 400 and 1000 mg/kg/day. The present study strongly suggests that exposure to n-BP in utero and during lactation has adverse effects on the reproductive system in male offspring, with a no observed adverse effect level (NOAEL) of 160 mg/kg/day. To our knowledge, this is the first study that reports increased E2 levels of male rats following n-BP exposure; we suggest that E2 levels may be considered as biomarkers for some endocrine disrupting chemicals (EDCs).  相似文献   

6.
Selaginella tamariscina is a traditional medicinal plant for treatment of some advanced cancers in the Orient. However, the effect of S. tamariscina on metastasis of osteosarcoma and the underlying mechanism remain unclear. We tested the hypothesis that S. tamariscina suppresses cellular motility, invasion and migration and also investigated its signaling pathways. This study demonstrates that S. tamariscina, at a range of concentrations (from 0 to 50 μg/mL), concentration-dependently inhibited the migration/invasion capacities of three osteosarcoma cell lines without cytotoxic effects. Zymographic and western blot analyses revealed that S. tamariscina inhibited the matrix metalloproteinase (MMP)-2 and MMP-9 enzyme activity, as well as protein expression. Western blot analysis also showed that S. tamariscina inhibits phosphorylation of p38 and Akt. Furthermore, SB203580 (p38 inhibitor) and LY294002 (PI3K inhibitor) showed the similar effects as S. tamariscina in U2OS cells. In conclusion, S. tamariscina possesses an antimetastatic activity in osteosarcoma cells by down-regulating MMP-2 and MMP-9 secretions and increasing TIMP-1 and TIMP-2 expressions through p38 and Akt-dependent pathways. S. tamariscina may be a powerful candidate to develop a preventive agent for osteosarcoma metastasis.  相似文献   

7.
Diuron is carcinogenic to the rat urinary bladder at high dietary levels. The proposed mode of action (MOA) for diuron is urothelial cytotoxicity and necrosis followed by regenerative urothelial hyperplasia. Diuron-induced urothelial cytotoxicity is not due to urinary solids. Diuron is extensively metabolized, and in rats, N-(3,4-dichlorophenyl)urea (DCPU) and 4,5-dichloro-2-hydroxyphenyl urea (2-OH-DCPU) were the predominant urinary metabolites; lesser metabolites included N-(3,4-dichlorophenyl)-3-methylurea (DCPMU) and trace levels of 3,4-dichloroaniline (DCA). In humans, DCPMU and DCPU have been found in the urine after a case of product abuse. To aid in elucidating the MOA of diuron and to evaluate the metabolites that are responsible for the diuron toxicity in the bladder epithelium, we investigated the urinary concentrations of metabolites in male Wistar rats treated with 2500 ppm of diuron, the urothelial cytotoxicity in vitro of the metabolites and their gene expression profiles. DCPU was found in rat urine at concentrations substantially greater than the in vitro IC50 and induced more gene expression alterations than the other metabolites tested. 2-OH-DCPU was present in urine at a concentration approximately half of the in vitro IC50, whereas DCPMU and DCA were present in urine at concentrations well below the IC50. For the diuron-induced MOA for the rat bladder, we suggest that DCPU is the primary metabolite responsible for the urothelial cytotoxicity with some contribution also by 2-OH-DCPU. This study supports a MOA for diuron-induced bladder effects in rats consisting of metabolism to DCPU (and 2-OH-DCPU to a lesser extent), concentration and excretion in urine, urothelial cytotoxicity, and regenerative proliferation.  相似文献   

8.
Benzo[a]pyrene (BaP) is a human carcinogen requiring metabolic activation prior to reaction with DNA. Cytochrome P450 (CYP) 1A1 is the most important hepatic and intestinal enzyme in both BaP activation and detoxification. CYP1A2 is also capable of oxidizing BaP, but to a lesser extent. The induction of CYP1A1/2 by BaP and/or β-naphthoflavone in liver and small intestine of rats was investigated. Both BaP and β-naphthoflavone induced CYP1A expression and increased enzyme activities in both organs. Moreover, the induction of CYP1A enzyme activities resulted in an increase in formation of BaP–DNA adducts detected by 32P-postlabeling in rat liver and in the distal part of small intestine in vivo. The increases in CYP1A enzyme activity were also associated with bioactivation of BaP and elevated BaP–DNA adduct levels in ex vivo incubations of microsomes of both organs with DNA and BaP. These findings indicate a stimulating effect of both compounds on BaP-induced carcinogenesis.  相似文献   

9.
Receptor activity-modulating proteins (RAMPs) are accessory molecules that form complexes with specific G protein-coupled receptors (GPCRs) and modulate their functions. It is established that RAMP interacts with the glucagon receptor family of GPCRs but the underlying mechanism is poorly understood. In this study, we used a bioluminescence resonance energy transfer (BRET) approach to comprehensively investigate such interactions. In conjunction with cAMP accumulation, Gαq activation and β-arrestin1/2 recruitment assays, we not only verified the GPCR–RAMP pairs previously reported, but also identified new patterns of GPCR–RAMP interaction. While RAMP1 was able to modify the three signaling events elicited by both glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), and RAMP2 mainly affected β-arrestin1/2 recruitment by GCGR, GLP-1R and glucagon-like peptide-2 receptor, RAMP3 showed a widespread negative impact on all the family members except for growth hormone-releasing hormone receptor covering the three pathways. Our results suggest that RAMP modulates both G protein dependent and independent signal transduction among the glucagon receptor family members in a receptor-specific manner. Mapping such interactions provides new insights into the role of RAMP in ligand recognition and receptor activation.  相似文献   

10.
11.
Panax notoginseng and its main active ingredients ginsenosides have long been used as medicines and food additives in China. Comparing with the extensive uses and active researches of P. notoginseng and its products, the side effect and probable toxicity were rare. 25-Methoxydammarane-3,12,20-triol (25-OCH3-PPD), a novel dammarane-type triterpene sapogenin that was first isolated from the extract of P. notoginseng, was proven to have strong antitumor activities against prostate cancer, breast cancer and lung cancer. The aim of the present study was to investigate the potential subchronic toxicity of 25-OCH3-PPD after it was repeatedly orally administered to Sprague–Dawley rats (5/sex/group/each time-point) at dose levels of 0, 150, 300 or 600 mg/kg/day for 13 weeks and 4-week recovery. No mortality and treatment-related toxicity effects were observed as a result of the administration of 25-OCH3-PPD at any dose level (150, 300 and 600 mg/kg) for 92 consecutive days. Although there were some statistical changes, such as increased weights in female rats and decreased organ weights and coefficients of the liver, spleen, kidney, and adrenal gland compared with the control group at the corresponding time, the autopsy and histopathological examination of the target organs did not show any abnormal responses. As a result, 25-OCH3-PPD was well tolerated by SD rat at doses of up to 600 mg/kg and that it is a potential candidate for therapeutic use.  相似文献   

12.
13.
14.
Koji products have been considered as an effective fermented food consumed in East Asia with many health benefits. Particularly, rice koji with Aspergillus terreus (RAT) has been reported to be able to prevent hyperlipidemia and hepatic steatosis through regulating cholesterol synthesis. Despite its biological activities, there is a lack of comprehensive information to give an assurance of its safety. Therefore, the objective of this study was to perform a series of toxicological studies (repeated dose oral toxicity and genotoxicity) according to test guidelines published by the Organization for Economic Cooperation and Development. Along with acute toxicity study using rats and beagle dogs, a 13-week toxicity study revealed no clear RAT-related toxic changes, including body weight, mortality, hematology, serum biochemistry, organ weight, and histopathology after oral administration at doses of 500, 1000, and 2000 mg/kg BW. The no-observed-adverse-effect level of RAT was considered to be more than 2000 mg/kg BW/day in rats of both genders. In addition, potential genotoxicity was evaluated using a standard battery of tests (Ames test, chromosome aberration assay, and micronucleus assay) which revealed that RAT showed no genotoxicity. Accordingly, these results suggest that RAT is a safe and non-toxic functional food for human consumption at proper dose.  相似文献   

15.
Artemisia capillaris (AC) has been used as an alternative therapy in obesity, atopic dermatitis, and liver diseases through several biological activity including anti-steatotic, antioxidant, and anti-inflammatory activities. Despite its ethnomedicinal benefits, no sufficient background information is available about the long-term safety and genotoxicity of the AC extract. Therefore, the present study was carried out to investigate the 13-week subchronic toxicity and genotoxicity of the AC extract according to the test guidelines published by the Organization for Economic Cooperation and Development. In the 13-week toxicity study using doses of 25, 74, 222, 667, and 2000 mg/kg body weight, oral administration of the AC extract in male and female rats did not result in any significant adverse effects in food/water consumption, body weight, mortality, hematology, serum biochemistry, organ weight and histopathology. Accordingly, the no-observed-adverse-effect level in rats of both genders was established for the AC extract at 2000 mg/kg/day, the highest dose level tested. In addition, the AC extract was not genotoxic in a battery of tests including Ames test, in vitro chromosome aberration assay and in vivo micronucleus assay. In conclusion, we demonstrated that the AC extract is considered as a safe traditional medicine for human consumption.  相似文献   

16.
In the United States, chemical additives cannot be used in food without an affirmative determination that their use is safe by FDA or additive manufacturer. Feeding toxicology studies designed to estimate the amount of a chemical additive that can be eaten safely provide the most relevant information. We analyze how many chemical additives allowed in human food have feeding toxicology studies in three toxicological information sources including the U.S. Food and Drug Administration's (FDA) database. Less than 38% of FDA-regulated additives have a published feeding study. For chemicals directly added to food, 21.6% have feeding studies necessary to estimate a safe level of exposure and 6.7% have reproductive or developmental toxicity data in FDA's database. A program is needed to fill these significant knowledge gaps by using in vitro and in silico methods complemented with targeted in vivo studies to ensure public health is protected.  相似文献   

17.
18.
19.
Pelargonidin (PEL) and cyanidin (CYN) are among the six most abundant anthocyanidins which provide red, blue and purple colors to fruits and vegetables. Health benefits associated with intake of anthocyanins have been attributed mainly to antioxidant activity of these color pigments. The aim of our present study was to assess in mice the impact of PEL and CYN intake on genotoxic stress induced by DNA damaging environmental toxicants. These anthocyanidins were administered by gavage to mice before exposure to genotoxic carcinogens diepoxybutane (DEB) and urethane (URE). In addition, the inhibitory effect of PEL and CYN on endogenous nitrosation was evaluated by using a model nitrosation reaction mixture consisting of methyl urea (MU) + sodium nitrite (SN) which reacts in the stomach to form the carcinogenic methyl nitrosourea (MNU). All the test doses of PEL (2.5–20 mg/kg) and CYN (1–4 mg/kg) significantly reduced the genotoxicity of DEB. A dose-related increase was observed for antigenotoxicity of PEL against URE. The lowest test-dose of CYN showed maximum protection against URE. Co-administration of PEL/CYN with the nitrosation reaction mixture led to reduction in genotoxicity. CYN was more effective as an inhibitor of endogenous nitrosation. Combination of PEL with ascorbic acid (AA) enhanced the antinitrosating effect when compared to that with each phytochemical alone. The results of our present study indicate that common anthocyanidins PEL and CYN can play a major role in reducing genotoxic stress induced by environmental toxicants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号