首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 296 毫秒
1.
王娟 《冶金分析》2020,40(6):62-67
为消除硅钙钡合金试样熔融制片时侵蚀铂-黄坩埚的难题,实验中硅钙钡样品以四硼酸锂-碳酸锂(m∶m=2∶1)为预氧化熔剂,在石墨垫底的瓷坩埚中高温熔融成熔球,再将熔球转到铂-黄坩埚中,再用四硼酸锂为熔剂熔融制成玻璃片,这样铂-黄坩埚在熔融制样过程中的腐蚀问题得到了有效解决,实现了熔融制样-X射线荧光光谱法(XRF)对硅钙钡合金中硅、钙、钡、磷、铝的测定。实验确定了最佳制样条件:0.2000g试样、2.0000g四硼酸锂、1.0000g碳酸锂在石墨垫底的瓷坩埚中,500℃灰化完全,900℃熔融15min,取出冷却;移入盛有3.0000g四硼酸锂的铂-黄坩埚中,加0.50mL 300g/L碘化钾脱模剂,在1150℃熔融15min,取出摇匀,再熔融15min,取出摇匀冷却,制得均匀玻璃片。实验方法选用具有适当梯度的硅钙钡合金标样和内控样绘制校准曲线,各待测元素校准曲线的相关系数r≥0.9997。精密度结果表明,各元素测定结果的相对标准偏差(RSD,n=10)在0.11%~5.9%;正确度结果表明,硅钙钡合金标样采用本法分析,其测定值与标准值相吻合。硅钙钡试样采用本法分析,其测定值与行业标准的分析值一致性较好,并进行了成对数据t检验,结果表明本法与行业标准分析方法无显著性差异,能满足日常生产检测要求。  相似文献   

2.
万芒  刘伟  曾小平 《冶金分析》2023,43(1):54-61
采用X射线荧光光谱法(XRF)测定稀土硅铁中硅、锰、铝、铁、钛及镧系元素时,熔融制样过程中氧化条件不好控制,容易造成挂壁坩埚过早熔化或坩埚挂壁不好的现象,使铂-金坩埚受到严重侵蚀。实验以四硼酸锂为熔剂铺底保护铂-金坩埚,使用碳酸锂对稀土硅铁样品进行烧结氧化;再采用过氧化钠进行深度氧化,解决了稀土硅铁合金对铂-金坩埚腐蚀的问题。试样和四硼酸锂熔剂的质量比为1∶30,在1 100℃下熔融试样12 min,可制得表面质量良好的玻璃片,有效地消除了试样的粒度效应和矿物效应影响。按照实验方法测定稀土硅铁中硅、锰、铝、钙、铁、钛、镧、铈、镨、钕、钐等11种主次元素,结果的相对标准偏差(RSD,n=10)为0.39%~5.0%,与标准方法及滴定法分析结果吻合较好,能满足稀土硅铁中主次元素的检测需求。  相似文献   

3.
李小青 《冶金分析》2018,38(6):39-42
为了解决锰铁、金属锰等合金试样玻璃熔融制片时侵蚀铂黄坩埚的难题,实验采用四硼酸锂-碳酸锂混合熔剂、五氧化二钒氧化剂在石墨垫底瓷坩埚中高温预氧化熔融,有效避免了熔融制样过程中铂金坩埚腐蚀的问题,建立了X射线荧光光谱法(XRF)测定锰铁、金属锰中锰、硅、磷的分析方法。讨论了预氧化熔融的熔剂体系及氧化方法、试样与熔剂的稀释比,结果表明,试样与四硼酸锂-碳酸锂混合熔剂以1∶45的稀释比、以0.5mL200g/L溴化锂溶液为脱模剂,在1120℃熔融制得的玻璃片均匀、透亮、无气泡,符合测定要求。精密度和正确度试验结果显示,各元素测定结果的相对标准偏差(RSD,n=10)在0.10%~0.96%之间,结果与锰铁标准物质、金属锰内控标样认定值(参考值)相符,完全满足常规分析要求。  相似文献   

4.
样品采用硝酸溶解,加入氨水将待测物沉淀,用无灰滤纸过滤,滤渣经过灼烧后用四硼酸锂和偏硼酸锂混合熔剂熔制成试料片,以波长色散X射线荧光光谱仪进行检测,实现了熔融制样-X射线荧光光谱法测定镧铈镨钕稀土合金中镧、铈、镨、钕的含量。以高纯物质配制校准标样,并分别采用干扰系数法进行谱线重叠干扰校正和可变理论α影响系数法(COAL模式)进行基体效应校正。对方法的精密度和回收率进行考察,相对标准偏差(RSD,n=11)小于2%,回收率介于98%~101%之间。对镧铈镨钕稀土合金实际样品进行分析,测定结果同电感耦合等离子体原子发射光谱法的结果相一致。  相似文献   

5.
熔融制样-X射线荧光光谱法(XRF)测定硅铁合金样品,需重点解决样品前处理中合金样品侵蚀铂-黄坩埚的难题。硅铁样品以四硼酸锂-碳酸锂预氧化剂在石墨垫底瓷坩埚中高温预氧化熔融后,再将熔融物转移至铂-黄坩埚中,用四硼酸锂熔融制成玻璃熔片,实现了熔融制样-X射线荧光光谱法对硅铁合金中硅、磷、锰、铝、钙、铬的测定。实验讨论了预氧化熔融的熔剂体系及氧化方法、试样与熔剂的稀释比,结果表明,试样与熔剂以1∶35的稀释比,以10滴300g/L碘化钾溶液为脱模剂,在1100℃熔融30min,熔融制得的玻璃片均匀、透明、无气泡,符合测定要求。用具有浓度梯度的系列硅铁有证标准样品制作校准曲线,各待测元素校准曲线的线性相关系数均大于0.9995。方法应用于硅铁合金实际样品中硅、磷、锰、铝、钙、铬的测定, 结果的相对标准偏差(RSD,n=11)在0.1%~5.8%之间;正确度试验表明,硅铁标准样品的测定结果与认定值相符,硅铁实际样品的测定结果与国家标准方法测定值一致,能满足常规分析要求。  相似文献   

6.
稀土铝中间合金中稀土含量(质量分数,下同)一般约在0.5%~20%之间,文献中鲜见稀土铝中间合金标样和测定稀土含量大于10%的方法。实验通过选择钐的Lβ1线,镧、铈的Lα线,钇的Kα线,采用纯物质法配制标准溶液解决无标样问题,采用特散比法校正基体效应,对熔片条件以及仪器参数进行优化,建立了一套熔融制样-X射线荧光光谱法(XRF)测定稀土铝中间合金中镧、铈、钐、钇的方法。实验表明,称样0.2g,用5mL盐酸(1+1)熔样,四硼酸锂-偏硼酸锂混合熔剂熔融,稀释比选择1∶30,以4mL溴化铵溶液为脱模剂,控制熔样温度为1050℃,熔样时间为15min,熔样效果较好。实验方法应用于镧铝、铈铝、镧铈铝、钐铝、钇铝5类稀土铝中间合金中稀土元素的测定,测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)结果基本一致,相对标准偏差(RSD)均在2%以下。方法可用于测定镧铝、铈铝、镧铈铝、钐铝、钇铝5类稀土铝中间合金中含量范围为0.5%~20%的镧、铈、钐、钇。  相似文献   

7.
闫丽 《冶金分析》2022,42(6):45-50
采用传统化学湿法测定锰铁合金中化学组分需要使用强酸、强碱等化学试剂,耗时长且操作技能不易掌握。为拓展X射线荧光光谱仪(XRF)测定锰铁合金的应用,实验在垫有石墨粉的陶瓷坩埚内,用滤纸包裹定量的样品和锰铁合金氧化剂,于800 ℃马弗炉内进行氧化,氧化后的样品转移至铂-黄坩埚内,以四硼酸锂为熔剂,用高频熔样机制备XRF用玻璃熔片,实现铂-黄坩埚外氧化试样,克服高频熔样机配套铂-黄坩埚容积小、挂壁制备熔剂坩埚等困难,有效解决了锰铁合金样品熔融过程中单质元素与铂形成低温共熔体而损坏铂-黄坩埚的难题。经条件试验,优化后的熔融条件为称样量0.200 0 g,助熔剂用量为5.000 0 g,熔样温度1 050 ℃,熔样时间12 min,进而实现了熔融制样-X射线荧光光谱法对锰铁合金中硅、锰、磷含量的测定。硅、锰、磷校准曲线决定系数不小于0.999 8。实验方法应用于锰铁合金日常检测,硅、锰、磷测定结果的相对标准偏差(RSD, n=10)均小于3%;标准样品的测定值与认定值间误差均可控制在国标化学分析方法允许差范围内。  相似文献   

8.
探讨采取熔融制样-X射线荧光光谱分析硅铁合金中Si、Fe、Mn、Al、P等元素含量实验条件优化后的较佳反应条件。本实验采用四硼酸锂熔剂在铂黄坩埚中铺底并挖半圆形小坑,把样品和氧化剂搅拌好后倒入小坑中,最后在四周及上面覆盖一层四硼酸锂,使用全自动电加热熔样机制样。采用此法制得的硅铁合金标准样品,用X射线荧光光谱测得的分析值与标准值相符且各元素相对标准偏差均能满足硅铁合金测定需求。  相似文献   

9.
使用熔融制样-X射线荧光光谱法(XRF)测定磷铁合金样品,关键是要解决样品前处理中合金样品侵蚀铂-黄坩埚的难题。采用陶瓷坩埚石墨垫底低温预氧化后,高温熔融制样,建立了X射线荧光光谱测定磷铁中磷、硅、锰和钛的方法。选用磷铁标准样品,按照一定的比例合成及在磷铁标准样品中加入标准溶液的方式,配制成一定梯度的磷铁校准样品,拓宽了校准曲线的含量范围。以碳酸锂和过氧化钡复合氧化剂,从400℃缓慢升温至800℃,对磷铁样品进行预氧化,避免了熔融过程中对铂-黄坩埚的腐蚀。实验结果表明,以四硼酸锂为熔剂,溴化铵溶液为脱模剂,稀释比40∶1,于1100℃下熔融20min,制得的玻璃熔片均匀稳定。各元素的检出限为32.47~57.49μg/g。在最佳实验条件下对磷铁标准样品进行测定,各元素测定结果的相对标准偏差(RSD,n=10)为0.28%~1.1%。实验方法应用于磷铁实际样品的测定,与其他方法的测量结果无显著性差异。  相似文献   

10.
XRF光谱法测定混合稀土中15个稀土分量   总被引:3,自引:1,他引:2       下载免费PDF全文
用 1 5个稀土元素纯氧化物为标准参考物 ,以Li2 B4O7为熔剂制成熔融片 ,根据“表观浓度”理论建立了一种简易的混合稀土无标定量分析方法。用不含分析元素的 1 4个稀土元素熔片及试剂空白片为零点 ,以 1 0 0 %含量或其它含量的分析元素熔片为高含量点 ,建立校准曲线 ,用DeJongh模式计算理论α系数 ,用回归法计算谱线重叠校正系数 ,以校正共存元素的吸收 -增强效应和谱线重叠影响。用若干试样考察了该方法的适用范围和分析结果的准确度 ,试验表明 ,所得的分析结果能满足定量分析的要求。  相似文献   

11.
熔融制样-X射线荧光光谱法(XRF)测定合金样品,需重点解决样品前处理中合金样品侵蚀铂-黄金坩埚的难题。实验以无水四硼酸锂为熔剂,过氧化钡、碳酸锂为氧化剂,建立了熔融制样-X射线荧光光谱法测定锰铁、硅锰合金中锰、硅、磷含量的方法。实验方法采用低温预氧化熔融制样技术,解决了锰铁、硅锰合金对铂-黄金坩埚腐蚀的难题;应用碳烧失基和消去项消除了锰铁、硅锰合金中烧失/烧增量对检测结果的影响。试验进一步探讨了稀释比、氧化剂加入量、熔融温度、熔融时间等条件对锰铁、硅锰合金中锰、硅、磷含量的影响,得出最佳试验条件:稀释比(m无水四硼酸锂∶m试样)为7∶0.25;氧化剂量分别为过氧化钡 0.5000g、碳酸锂0.5000g;熔融温度为1100℃;静置熔融时间为150s。锰、硅、磷的方法检出限分别为10、25、18μg/g。在最佳实验条件下分别对锰铁(GSB03-1687-2004)、硅锰合金(GSB03-1316-2000)国家标准样品进行精密度考察,锰测定结果的相对标准偏差(RSD)分别为0.088%和0.053%(锰),0.35%和1.1%(硅),2.9%和1.2%(磷)。对于锰铁、硅锰合金实际样品,实验方法与国标方法的测定结果一致性较好,能满足常规分析要求。  相似文献   

12.
X射线荧光光谱法测定钒铁合金中钒铝硅锰   总被引:1,自引:0,他引:1       下载免费PDF全文
姚强  朱宇宏  王琼  路通  王燕 《冶金分析》2016,36(9):62-65
采用铂金坩埚直接熔融钒铁合金,存在腐蚀铂金坩埚的危险。实验采用HNO3(1+1)和H2SO4(1+1)先消解钒铁合金,再用熔融制样法将样品浓缩物在铂金坩埚中与四硼酸锂和碳酸锂进行熔融,熔体在铂金坩埚中成型,避免了试样对铂金钳锅的腐蚀。然后以钒铁合金标准样品建立校准曲线,采用OXSAS软件提供的数学模型对谱线重叠效应进行校正,可实现X射线荧光光谱法(XRF)对钒铁合金中V、Al、Si和Mn元素含量的准确测定。精密度试验表明,待测元素的相对标准偏差均低于0.7%(RSD,n=9),能满足钒铁合金中各元素的检测要求。采用实验方法分析钒铁合金标准样品,测定值与认定值吻合良好。  相似文献   

13.
准确测定稀土铝中间合金中稀土总量,对于有效控制稀土铝中间合金的生产技术和产品质量具有重要意义。用400g/L氢氧化钠溶液溶解试样,此时,稀土与氢氧化钠反应生成氢氧化稀土沉淀,而铝与氢氧化钠反应后以偏铝酸根的形式留在了试液中,过滤,实现了铝与稀土元素的分离;用盐酸溶解沉淀,加入氢氟酸,此时稀土和氢氟酸反应生成氟化稀土沉淀,而铁与氢氟酸反应形成络合物留在溶液中,过滤,实现了干扰元素铁与稀土元素的分离;加入盐酸和高氯酸溶解沉淀,用抗坏血酸还原残留铁(III),乙酰丙酮溶液掩蔽残留的少量干扰元素铝,控制pH 5.5,以二甲酚橙作指示剂,用EDTA标准溶液滴定至溶液由红紫色变为亮黄色即为终点,建立了EDTA滴定法测定稀土铝中间合金中稀土总量的方法。将实验方法用于稀土铝中间合金(镧铝、钐铝、铒铝、钇铝)试样中稀土总量的测定,并在试样中分别加入不同量的于950℃马弗炉中灼烧过的高纯氧化镧、高纯氧化钐、高纯氧化铒和高纯氧化钇试剂进行加标回收试验,结果的相对标准偏差(RSD,n=11)不大于0.30%,加标回收率为99.6%~100.4%。选取镧铝、钐铝试样,按照实验方法测定其中稀土总量,并采用国标GB/T 31966—2015中的草酸盐重量法进行方法比对试验,测定结果基本一致。  相似文献   

14.
采用硫酸铵溶液提取离子型稀土原矿试样中离子相稀土,以硫酸铵溶液为基体配制校准系列溶液,建立了电感耦合等离子体质谱法(ICP-MS)测定样品溶液中离子相稀土总量及分量的方法。实验表明:对于10.00 g离子型稀土矿试样,加入100 mL 50 g/L硫酸铵溶液振荡15 min后放置30 min可有效提取出离子相稀土;采用5.0 g/L硫酸铵溶液进行校准系列溶液的基体匹配,选择103Rh-185Re双内标可有效校正硫酸铵的基体效应及仪器信号的漂移影响;选择合适的同位素消除了可能存在的质谱干扰。在最佳条件下进行测定,15个稀土元素的校准曲线在10.0~100.0 μg/L范围内线性相关系数均大于0.999 91,方法检出限在0.10~0.66 μg/g之间。方法应用于不同离子型稀土矿区中离子相稀土总量及分量的测定,结果与电感耦合等离子体原子发射光谱法(ICP-AES)一致,相对标准偏差(RSD,n=11)在1.0%~5.2%之间,回收率在98%~104%之间。  相似文献   

15.
锆钛矿中存在耐高温且硬度高的锆和钛,常规酸溶法难以将其完全分解,碱熔法处理样品时样品易粘埚。采用碳酸钠-硼酸熔融样品,以50 ng/mL185Re为内标,动能歧视碰撞池(KED)模式和干扰系数校正法克服了轻稀土元素氧化物或氢氧化物对重稀土元素的干扰,建立了电感耦合等离子体质谱法(ICP-MS)测定锆钛矿中16种稀土元素(钪、钇、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥)分量及其总量的分析方法。对比了盐酸-硝酸-氢氟酸-高氯酸敞开酸溶、硝酸-氢氟酸密闭酸溶、氢氟酸微波消解、过氧化钠-氢氧化钠熔融、硼砂熔融和碳酸钠-硼酸熔融6种分解方法,结果表明,碳酸钠-硼酸熔剂对样品分解的效果最佳。采用样品稀释法控制基体质量浓度为0.20 mg/mL和内标元素校正法降低基体效应。实验表明:各稀土元素的校准曲线线性相关系数在0.999 1~1.000 0之间,方法检出限为0.000 1~0.008 4 μg/g,定量限为0.000 5~0.042 0 μg/g。采用实验方法测定与锆钛矿成分类似的锆矿石标准样品中16种稀土元素分量及总量,结果与认定值基本一致。将实验方法应用于锆钛矿实际样品的测定,测定结果的相对标准偏差(RSD, n=8)为1.2%~4.0%,加标回收率为94%~110%,符合国家地质矿产行业标准DZ/T 0130—2006第3部分规定的加标回收率允许限90%~110%的范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号