首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 843 毫秒
1.
采用盐酸-硝酸-氢氟酸并采用微波消解处理样品,高氯酸冒烟至尽干,加盐酸溶解盐类,选择Pb 220.353nm、Zn 206.200nm、Cu 327.393/Cu 324.752nm、As 193.696nm、Sb 206.836nm、Bi 190.171nm、Cd 214.440nm/Cd 226.502nm为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铅、锌、铜、砷、锑、铋、镉,从而建立了银精矿中铅、锌、铜、砷、锑、铋、镉等杂质元素的分析方法。铅、锌、锑在0.50%~5.00%,铜、铋在0.10%~5.00%,砷在0.10%~3.00%,镉在0.050%~0.50%范围内校准曲线呈线性,线性相关系数r均大于0.9999。方法中各元素的检出限为0.001%~0.014%。实验方法用于测定两个银精矿样品中铅、锌、铜、砷、锑、铋、镉,结果的相对标准偏差(RSD,n=11)为0.74%~2.9%,并与相应的国标方法测定值相吻合(其中铅和锌采用火焰原子吸收光谱法(YS/T 445.9—2001),铜采用火焰原子吸收光谱法(YS/T 445.2—2001),砷和铋采用氢化物发生-原子荧光光谱法(YS/T 445.3—2001),锑参照采用氢化物发生-原子荧光光谱法(YS/T 445.3—2001),镉采用原子吸收光谱法(YS/T 445.8—2001))。按照实验方法测定两个银精矿样品中铅、锌、铜、砷、锑、铋、镉,并进行加标回收试验,回收率为96%~105%。  相似文献   

2.
林园 《冶金分析》2018,38(3):41-45
足金样品的检测有着广泛市场需求,但常用的火焰原子吸收光谱法(FAAS)、电感耦合等离子体原子发射光谱法(ICP-AES)对于铅、镉质量分数均小于0.0001%的足金样品无能为力,而电感耦合等离子体质谱法(ICP-MS)标准加入校正-内标法不能用于银、铜含量高(质量分数均大于0.001%)的足金样品检测。采用王水溶解样品后直接用乙酸乙酯萃取,以2%~5%(体积分数)硝酸为测定介质,建立了ICP-MS测定纯度为99.9%~99.999%足金中铜、银、铅、镉4种主要杂质元素的方法。干扰试验表明,足金中高含量银对测定铜、铅、镉没有干扰。在选定的实验条件下,各元素校准曲线的相关系数不小于0.9994,方法测定下限为0.01~0.19μg/g。将实验方法应用于足金实际样品分析,结果的相对标准偏差(RSD,n=6)为1.3%~2.6%,加标回收率为99%~105%。采用实验方法对3种纯度(99.9%、99.99%、99.999%)足金样品中的铜、银、铅和镉进行测定,测得结果分别与原子吸收光谱法(AAS)或ICP-MS标准加入校正-内标法基本一致。方法可实现纯度为99.9%~99.999%足金中银、铜、铅、镉的测定。  相似文献   

3.
采用王水消解无铅焊料样品,基体匹配法绘制校准曲线消除基体干扰对测定结果的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定无铅焊料中银、铜、铅、铁、锌、镉、砷、铝、锑、铋、铟、镍等12种元素的方法。在选定的实验条件下,方法中各元素的检出限在0.000 2~0.016 μg/mL之间,各元素校准曲线线性相关系数均大于0.999 5。按照实验方法测定样品,加标回收率为87%~125%,测定结果的相对标准偏差(RSD,n=6)在0.25%~5.1%之间,测定结果与参考值一致。  相似文献   

4.
葛晶晶  刘洁 《冶金分析》2016,36(9):37-41
高纯锌中铁、铜、镉、锑、铅、锡、砷元素含量低,基体和多原子离子干扰严重,这使得溶样后直接采用电感耦合等离子体质谱法(ICP-MS)对这7种元素进行测定的难度较大。实验表明:采用15 mL硝酸(1+2)低温溶解0.100 0 g样品,不进行基体分离,通过优化仪器参数、选择合适的同位素避免质谱干扰,采用标准加入法绘制校准曲线消除基体效应,可实现电感耦合等离子体质谱法(ICP-MS)对高纯锌中铁、铜、镉、锑、铅、锡和砷共7种痕量元素的测定。各元素校准曲线的相关系数在0.995 8到0.999 7之间,方法检出限为0.05~7.53 μg/L。采用实验方法对高纯锌实际样品中铁、铜、镉、锑、铅、锡和砷进行分析,测得结果的相对标准偏差(RSD,n=11)为2.4%~5.3%,加标回收率为96%~109%。按照实验方法测定纯锌样品中7种痕量元素,砷测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,锡和锑与原子荧光光谱法(AFS)基本一致,铁、铜、镉和铅与采用锌基体分离—ICP-MS基本一致。  相似文献   

5.
范丽新  陆青 《冶金分析》2021,41(2):60-65
铜冶炼分银渣中含有较高含量的砷、锑、锡等元素,对碘量法测铜产生干扰,并且样品较难溶解完全。实验采用盐酸-硝酸-高氯酸-硫酸分解样品,用氢溴酸除去砷、锑、锡等干扰元素。控制溶液pH值为3~4,用氟化氢铵掩蔽铁,加入碘化钾与铜(II)作用,析出的碘以淀粉为指示剂,用硫代硫酸钠标准滴定溶液滴定,建立了硫代硫酸钠碘量法测定铜冶炼分银渣中铜的方法。实验优化了溶样方式、冰乙酸加入量以及饱和氟化氢铵加入量等条件。实验方法用于测定铜冶炼分银渣中铜,结果的相对标准偏差(RSD,n=11)为0.30%~0.85%;回收率为99.6%~101.8%。  相似文献   

6.
准确测定高铋铅中杂质元素含量对电解精炼生产技术条件控制具有重要意义。实验对高铋铅中锑含量的测定进行了探讨。采用硝酸-酒石酸混酸溶解样品,用硫酸碳化酒石酸,硝酸除碳,以硫酸联胺作还原剂将锑(V)还原为锑(III),然后在盐酸介质中,加磷酸掩蔽高价铁离子,加热试液至80~90℃,以甲基橙、亚甲基蓝为指示剂,以硫酸铈标准溶液进行滴定,建立了硫酸铈滴定法测定高铋铅中锑的方法。干扰试验结果表明,高铋铅中的共存元素(铅、铋、铜、银、锡、铁、砷、金)对锑的测定无影响。采用实验方法对高铋铅实际样品进行精密度和加标回收试验,测定结果的相对标准偏差(RSD,n=9)为1.0%~1.2%,加标回收率为99%~102%。样品经酒石酸-硝酸混酸处理后,分别使用硫酸铈滴定法和火焰原子吸收光谱法(FAAS)测定锑含量,两种方法的测定结果相吻合。将实验方法应用于高铋铅实际样品中锑的测定,并经过实验室间比对试验,结果满意。  相似文献   

7.
银精矿中铋元素含量直接影响到冶炼工艺的选取和金属平衡管理,是评价银精矿的重要指标,但对于高铋银精矿中大于5%(质量分数)铋的测定方法还鲜见报道,因此迫切需要一种快速、准确的检测高铋银精矿中铋的方法。采用波长色散X射线荧光光谱仪(WDXRF)、高频红外碳硫分析仪对高铋银精矿试样进行半定量成分分析,确定其主要含有银、铅、铋、铜、锑、铁、硫、硅、碳等元素。在此基础上,对溶样体系及共存元素的干扰和消除方法进行了探讨,结果表明,以盐酸-硝酸-高氯酸-氢溴酸体系溶解试样后溶液清亮,终点明显;利用盐酸挥发去除样品中硫,硝酸和高氯酸加热至冒浓烟除碳;采用氢溴酸挥发2次的溶样方式可基本将砷、锡、硒挥发完全,大部分锑也会被挥发出去,残留的少部分锑可通过加入5mL 100g/L酒石酸溶液的方式来掩蔽;加入5mL饱和硫脲溶液可掩蔽铜;加入0.2g抗坏血酸可掩蔽铁(III);其他共存元素的干扰试验表明,试样中的银、铅、锌、镉、镁、钼对测定的干扰可忽略。用饱和乙酸铵溶液和硝酸(4+96)调节样品溶液pH值至1.5~1.7,以EDTA标准滴定溶液滴定铋,建立了EDTA滴定法测定高铋银精矿中铋的方法。按照实验方法对3个高铋银精矿样品中铋进行加标回收试验,回收率为98%~102%。实验方法用于测定5个高铋银精矿样品中铋,测定结果的相对标准偏差(RSD,n=11)为0.39%~0.87%,所得结果与电感耦合等离子体原子发射光谱法(ICP-AES)测定结果相吻合。  相似文献   

8.
杨峥  梁钪  张艳  刘喜山  庞晓辉  高颂 《冶金分析》2021,40(11):63-70
铜冶炼烟尘中含有较高含量的铅、铜、砷、铝、铁、锑、铋等元素,对滴定法测镉产生干扰。采用氟化铵-盐酸-硝酸-高氯酸分解试样,用氢溴酸除去砷、锑、锡等干扰元素。硫酸铅沉淀分离铅,氨水沉淀分离铁、铋、部分铝等共存元素,在稀硫酸介质中加入硫代硫酸钠使铜离子以硫化亚铜状态从溶液中分离,滤液中加入过量的Na2EDTA标准滴定溶液,加入氟化钾掩蔽剩余铝,在pH 5.5~5.6的盐酸-六次甲基四胺缓冲溶液中,以二甲酚橙为指示剂,用锌标准滴定溶液返滴定。测得结果为锌、镉合量,扣除锌量,即为镉量。优化了氨水用量、氟化钾用量等实验条件,建立了Na2EDTA返滴定法测定铜冶炼烟尘中镉含量的方法。方法用于测定铜冶炼烟尘中镉,结果与电感耦合等离子体原子发射光谱法(ICP-AES)一致,结果的相对标准偏差(RSD,n=11)为0.56%~0.92%。按照实验方法对铜冶炼烟尘样品进行加标回收试验,回收率为99.6%~100.2%。  相似文献   

9.
为保障供需双方交易的顺利进行,需要检测银精矿中锑的含量。采用硝酸-氯酸钾-氢氟酸-硫酸溶解样品,以硫脲-抗坏血酸为预还原剂,10g/L硼氢化钾溶液为还原剂,10%(体积分数)盐酸为测定介质,实现了氢化物发生-原子荧光光谱法(HG-AFS)对银精矿中锑的测定。详细讨论了溶样方法、样品中共存元素对测定的干扰及消除方法。结果表明,采用10mL硝酸-0.5g氯酸钾-5mL氢氟酸-5mL硫酸(1+1)可将0.2g样品溶解完全;除砷外,样品中其他共存元素对锑测定的干扰可忽略;砷对锑会产生正向干扰,通过降低硼氢化钾溶液的质量浓度为10g/L可消除样品中砷对测定的干扰。在选定的实验条件下,锑质量浓度在5.00~100.0μg/L范围内与其对应的荧光强度呈线性关系,线性相关系数为0.9995,方法检出限为6×10-2 μg/L。按照实验方法对锑质量分数为 0.01%~0.50%的银精矿样品中锑含量进行测定,结果与电感耦合等离子体原子发射光谱法(ICP-AES)相吻合,相对标准偏差(RSD,n=11)为1.0%~2.3%,按照实验方法对两个银精矿样品进行加标回收试验,加标回收率为95%~105%。  相似文献   

10.
采用硝酸和盐酸溶解样品, 电感耦合等离子体原子发射光谱法(ICP-AES)测定了废旧线路板中砷、锑、铋、锡、镍、铅、铟、银、镧、铈、钆和钇12种元素。对硝酸和盐酸的用量、分析谱线的选择、基体的影响和仪器参数等进行了研究, 确定了实验的最佳测定条件。通过加标回收试验和采用电感耦合等离子体质谱(ICP-MS)法进行对照分析, 验证了方法的可靠性和准确性。试验表明, 方法适用于废旧线路板中砷、锑、铋、锡、镍、铅、铟、银、镧、铈、钆和钇的测定。方法的检出限(3s)为0.000 9~0.04 μg/mL, 测定样品的相对标准偏差(n=5)在0.58%~4.6%之间, 加标回收率在85%~104%范围。  相似文献   

11.
以王水为消解体系,采用3步程序升温微波消解法处理样品,选择8%(体积分数)王水为测定介质,实现了火焰原子吸收光谱法(FAAS)对铜精矿样品中1.6~600.0g/t银的测定。干扰试验表明,样品中的铜和铁对银测定的干扰可忽略。在选定的实验条件下,以银质量浓度为横坐标,测得的吸光度为纵坐标绘制校准曲线,其线性相关系数为0.9998。方法检出限为1.6g/t。采用实验方法对3个铜精矿标准物质分别测定11次,测定值与认定值一致,相对标准偏差(RSD)为0.23%~0.66%。选取5组不同银含量的铜精矿样品,按照实验方法测定,并根据测得银含量的不同范围,分别与国标方法GB/T 3884.2—2012中的酸溶-FAAS和火试金-滴定法测得结果进行对比,结果表明,二者基本吻合。  相似文献   

12.
准确测定铂钯精矿中铜、金、铂、钯、硒、碲、铋、铱、铑等元素含量,是从铂钯精矿中回收有价元素的重要理论支撑。一般采用重量法测定其中铂和钯,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定铜、金、硒、碲、铋,而铱、铑等多采用铅试金或锑试金预富集后再采用原子吸收光谱法逐一测定,存在分析速度慢、周期长、操作繁琐、检测成本高等问题,难以满足实际检测要求。为实现上述元素的准确、快速测定,实验通过密闭消解样品,建立了一次溶解样品后直接用ICP-AES测定铂钯精矿中铜、金、铂、钯、硒、碲、铋、铱、铑的方法。实验表明,在50 mL密闭消解罐中加入0.2 g样品,以王水(1+1)溶解,于160 ℃干燥箱中消解6 h,可将样品完全溶解;再选择合适的分析谱线消除谱线干扰,可实现ICP-AES对铂钯精矿中各元素的测定。在最优的实验条件下,各元素的校准曲线相关系数均大于0.999,方法检出限为0.000 1%~0.001 6%。实验方法用于测定实际铂钯精矿中铜、金、铂、钯、硒、碲、铋、铱、铑,结果的相对标准偏差(RSD,n=11)为0.33%~4.8%,加标回收率为96%~103%。  相似文献   

13.
刘锦锐  加明 《冶金分析》2021,41(8):76-83
准确、快速地测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅等19种微量杂质元素,对光致发光材料钼酸钙的质量判定有重要意义。选择过氧化氢-盐酸溶解体系对样品进行前处理;采用钼基体匹配法消除基体效应对测定的影响;通过选择合适的谱线消除光谱干扰;使用电感耦合等离子体原子发射光谱法(ICP-AES)测定光致发光材料钼酸钙中上述19种微量杂质元素。方法中各待测元素校准曲线的线性相关系数均大于0.999 0;方法中各元素检出限为0.2~4.4 μg/g。按照实验方法测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅,结果的相对标准偏差(RSD,n=8)为0.61%~6.8%;加标回收率为95%~105%。按照实验方法测定实验室内控样品,测定结果与电感耦合等离子体质谱法(ICP-MS)测定结果一致。  相似文献   

14.
提出了用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铸铁锅中铝、砷、镉、铬、铅、锑、铊7种对人体有害微量元素的方法。样品用硝酸、盐酸溶解后过滤或样品经硝酸、高氯酸冒烟后用王水溶解,然后选择Al 396.152 nm、As 193.759 nm、Cd 228.802 nm、Cr 267.716 nm、Pb 405.783 nm、Sb 206.833 nm、Tl 351.924 nm作为分析线,用电感耦合等离子体原子发射光谱法(ICP-AES)测定。Fe基体对待测元素的干扰通过在配制校准曲线溶液系列时进行基体匹配和采用干扰系数校正法消除。样品中硅、锰、铜对测定没有干扰。方法的检出限(w/%)为0.000 13(Al)、0.000 32(As)、0.000 03( Cd)、0.000 09(Cr)、0.000 93 (Pb)、0.000 59(Sb)和0.001 2(Tl)。方法应用于铸铁标准物质的分析,测定值与认定值相符;应用于铸铁锅实际样品的分析,回收率在92%~112%之间。  相似文献   

15.
建立了电感耦合等离子体质谱法(ICP-MS)同时测定铁精矿中铬、砷、锡、镉、锑、铅和铋等元素含量的方法。确定使用无水碳酸钠和硼酸的混合熔剂于950 ℃熔融样品,用盐酸浸取熔融物以测定锡、锑、铋,用硝酸溶液浸取熔融物以测定铬、砷、镉、铅。优化了仪器的工作参数;通过选择合适的测定同位素消除了可能存在的质谱干扰;测定铬、砷、镉、锡、锑时选用铑内标,测定铅、铋时选用铊内标校正基体效应和仪器信号漂移。采用本方法对铁精矿样品进行分析,测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,相对标准偏差为4.3%~8.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号