首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary A F1 hybrid of Petunia hybrida, heterozygous for at least one marker on each of the seven chromosomes, was transformed with a modified strain of Agrobacterium tumefaciens in which the phytohormone biosynthetic genes in the transferred DNA (T-DNA) were replaced with a NOS/NPTII/NOS chimeric gene and a wildtype nopaline synthase (NOS) gene. The chimeric gene, which confers kanamycin resistance, was used as selectable marker during the transformation process and the NOS gene was used as a scorable marker in the genetic studies. After plants had been regenerated from the transformed tissues, the transgenic plants that expressed both of these markers were backcrossed to the parental lines. The offspring were examined for the segregation of the NOS gene and the Petunia markers. Genetic mapping was thus accomplished in a single generation.By Southern hybridization analysis we confirmed the presence of the expected T-DNA fragments in the transformed plants. Four out of the six plants presented here, had just one monomeric T-DNA insertion. The sizes of the plant/T-DNA junction fragments suggest that the integration occurred in different sites of the Petunia genome. One transformant gave a more complicated hybridization pattern and possibly has two T-DNA inserts. Another transgenic plant was earlier reported (Fraley et al. 1985) to have two, possibly tandemly repeated T-DNAs.Data is presented on the genetic localization of the T-DNA inserts in six independently obtained transgenic plants. The T-DNA inserts in three plants were mapped to chromosome I. However, the distances between the NOS gene and the marker gene on this chromosome were significantly different. In another transgenic plant the NOS gene was coinherited with the marker on chromosome IV. Two other transgenic plants have the T-DNA insert on chromosome III. A three point cross enabled us to determine that both plants have the NOS gene distally located from the peroxidaseA (prxA) marker and both plants showed about 18% recombination. However, Southern hybridization analysis shows that the sizes of the plant/T-DNA junction fragments in these transgenic plants are different, thus suggesting that the integrations occurred in different sites.  相似文献   

2.
RFLP inheritance and linkage in walnut   总被引:2,自引:0,他引:2  
Thirty-two low-copy-number genomic DNA clones from a walnut (Juglans sp.) Pst I genomic library were used to establish a molecular-marker linkage map for walnut. The clones were hybridized to restriction-endonuclease-digested DNA from parent walnut trees involved in an interspecific backcross of (J. hindsii x J. regia) x J. regia in order to identify parental polymorphism. Sixty-three backcross progeny were analyzed to determine the inheritance and linkage of 48 RFLP loci. Sixty-six percent of the walnut cloned sequences detected duplicated, but unlinked, loci. Twelve linkage groups were identified by 42 of the RFLP loci. A Poisson probability method for estimating genome size was utilized to calculate the approximate walnut genome length as 1660 cM and to estimate that 138 markers would be needed to cover 95% of the walnut genome within 20 cM of each marker.  相似文献   

3.
Summary Two lines of transgenic Nicotiana tabacum transformed to kanamycin resistance by means of a binary Agrobacterium vector containing a nos-npt gene were investigated over three generations. Southern hybridization and crossing analyses revealed that a single copy of T-DNA had integrated in each line and that the kanamycin resistance was regularly transmitted to the progeny as a monogenic dominant trait. Homozygous transgenic plants were fully fertile, morphologically normal and did not significantly differ from wild-type plants in the quantitative characters examined (plant height, flowering time). The two lines showed very low, but significantly different levels of meiotic instability: kanamycin-sensitive plants occurred among backcross progeny from homozygous transgenic plants with frequencies of 6/45,000 and 25/45,000, respectively. The sensitive plants arose independently of each other and thus resulted from meiotic rather than mitotic events. These findings demonstrate for the first time that integrated foreign genes can be transmitted to progeny with the high degree of meiotic stability required for commercial varieties of crop plants. They emphasize the importance of non-homologous integration and of avoiding co-integration of inactive gene copies for achieving meiotically stable transformants.  相似文献   

4.
Four long-term embryogenic lines of Asparagus officinalis were co-cultured with the hypervirulent Agrobacterium tumefaciens strain AGL1Gin carrying a uidA gene and an nptII gene. 233 embryogenic lines showing kanamycin resistance and -glucuronidase (GUS) activity were obtained. Transformation frequencies ranged from 0.8 to 12.8 transformants per gram of inoculated somatic embryos, depending on the line. Southern analysis showed that usually 1 to 4 T-DNA copies were integrated. Regenerated plants generally exhibited the same insertion pattern as the corresponding transformed embryogenic line. T1 progeny were obtained from crosses between 6 transformed plants containing 3 or 4 T-DNA copies and untransformed plants. They were analysed for GUS activity and kanamycin resistance. In three progenies, Mendelian 1:1 segregations were observed, corresponding to one functional locus in the parent transgenic plants. Southern analysis confirmed that T-DNA copies were inserted at the same locus. Non-Mendelian segregations were observed in the other three progenies. T2 progeny also exhibited non-Mendelian segregations. Southern analysis showed that GUS-negative and kanamycin-sensitive plants did not contain any T-DNA, and therefore inactivation of transgene expression could not be responsible for the abnormal segregations.  相似文献   

5.
Summary The 200 kb Agrobacterium Ti-plasmid pTiT37 carries a 25 kb segment of T-DNA which it transfers to plant cells during crown-gall tumorigenesis. We have previously engineered into this T-DNA a pBR322-derived cloning vector which enabled us to rescue-clone full length T-DNA from the Ti-plasmid into a 36 kb MINI-Ti plasmid. We report here the deletion of oncogenes from MINI-Ti to produce Micro-Ti containing the nopaline synthase gene and the ampicillin resistance gene and origin of replication of pBR322, flanked by left and right T-DNA borders. Micro-Ti was recloned into the wide host range plasmid pRK290 and transformed into an A. tumefaciens strain carrying a helper plasmid that could supply Virulence (VIR) genes in trans. Using the octopine Ti-plasmid pTiB6-806 as a helper, transformed tobacco cells were obtained which produced both nopaline and octopine. Two cloned cell lines producing both opines were found to be hormone dependent and to produce fertile tobacco plants. We selfed one of these plants and found that the two opine markers segregated in the F1 progeny in a Mendelian fashion. This showed that the T-DNAs were not linked in the transformed plant genome. Southern blot analysis of the genomic DNA from the regenerated plant showed that only part of the (oncogenic) octopine T-DNA was present indicating that it had suffered a deletion in the auxin producing locus (tms region). Presence of the cytokinin autonomy locus presumably accounts for the abnormal rooting behavior of the F1 progeny seedlings containing this T-DNA.Abbreviations NAA Naphtalene acetic acid - IAA Indole-3-acetic acid - BA 6-benzylaminopurine - pCPA para-chlorophenoxyacetic acid Part of this work was presented for her doctoral thesis by A. JdF at the National Institute of Agronomy of Paris-Grignon, January 1983  相似文献   

6.
Transposon-mediated repositioning of transgenes is an attractive strategy to generate plants that are free of selectable markers and T-DNA inserts. By using a minimal number of transformation events a large number of transgene insertions in the genome can be obtained so as to benefit from position effects in the genome that can contribute to higher levels of expression. We constructed a Bacillus thuringiensis synthetic cry1B gene expressed under control of the maize ubiquitin promoter between minimal terminal inverted repeats of the maize Ac-Ds transposon system, which was cloned in the 5' untranslated sequence of a gfp gene used as an excision marker. The T-DNA also harboured the Ac transposase gene driven by the CaMV 35S promoter and the hph gene conferring resistance to the antibiotic hygromycin. Sixty-eight independent rice (Oryza sativa L.) transformants were regenerated and molecularly analysed revealing excision and reinsertion of the Ds-cry1B element in 37% and 25% respectively of the transformation events. Five independent transformants harbouring 2–4 reinserted Ds-Cry1B copies were analysed in the T1 progeny, revealing 0.2 to 1.4 new transpositions per plant. Out segregation of the cry1B gene from the T-DNA insertion site was observed in 17 T1 plants, representing 10 independent repositioning events without selection. Western analysis of leaf protein extracts of these plants revealed detectable Cry1B in all the plants indicating efficient expression of the transgene reinsertions. Stability of position and expression of the cry1B transgene was further confirmed in T2 progeny of T-DNA-free T1 plants. New T-DNA-free repositioning events were also identified in T2 progenies of T1 plants heterozygous for the T-DNA. Furthermore, preliminary whole plant bioassay of T-DNA-free lines challenged with striped stem borer larvae suggested that they are protected against SSB attacks. These results indicate that transposon mediated relocation of the gene of interest is a powerful method for generating T-DNA integration site-free transgenic plants and exploiting favourable position effects in the plant genome.  相似文献   

7.
A method is described for the high frequency transformation of carrot proembryogenic suspension culture cells by a non-oncogenic Ti-plasmid vector (pGV3850::1103) which carried a chimaeric kanamycin resistance gene (nos-NPT-II). Plants were regenerated efficiently from transformed material by somatic embryogenesis in the presence of kanamycin. Transformed tissues expressed readily detectable levels of both NPT-II and nopaline. NPT-II could be detected in total protein extracts by Western blotting. This analysis indicated that NPT-II was produced as a single, full length polypeptide. The T-DNA copy number in individually selected transformants was analysed by Southern blotting and ranged from 1–8 per diploid genome. The copy number and organization of the T-DNA was retained in plants regenerated from these transformants by somatic embryogenesis. These data suggested a clonal origin for the selected kanamycin resistant colonies. NPT-II expression levels appeared to be directly related to gene dosage.  相似文献   

8.
We present a linkage map of intracisternal A-particle (IAP) proviral loci. The IAP family consists of 2000 endogenous proviral elements that are widely dispersed in the mouse genome. The map was constructed by using an interspecific backcross and markers defined by oligonucleotide probes specific for subclasses of expressed IAP elements. In genomic DNA from C57BL/6J mouse, these probes each detected from 12 to 44 HindIII restriction fragments that represent junctions between proviral and 5-flanking DNA. The fragments have characteristic strain distribution patterns (SDPs) that are particularly polymorphic in the DNAs of C57BL/6J and Mus spretus mice used for the backcross. IAP loci were placed on the map by comparison of their distribution patterns with those of known genetic markers in the backcross. The map includes 51 IAP loci that have not been previously mapped and 23 IAP proviruses that had been previously mapped in recombinant inbred (RI) strains. Comparable map positions were obtained with the IAP markers in the interspecific backcross and the RI strains. The mapped IAP loci were widely dispersed on the X Chromosome (Chr) and all of the autosomes except Chrs 9 and 19, providing useful genetic markers for linkage studies.  相似文献   

9.
Monascus ruber, a red mold species, has been widely used in the fields of food and medicine. In this research, we transformed Monascus ruber spores using Agrobacterium tumefaciens as a tool for random insertional mutagenesis with the hygromycin phosphotransferase gene as the selected marker. Three types of mutants including citrinin-producing mutants, mutants with abnormal aerial hyphae and pigment change mutants were screened for molecular analysis. Southern blot analysis showed that more than 83.3% of transformants contained single T-DNA insertions. The genomic DNA segments of the transformants flanking the T-DNA could be amplified from their left borders with TAIL-PCR. Homologous comparison using the Blast tool showed that none of the isolated DNA sequences had any similarity to each other, suggesting that the T-DNA was randomly integrated into the fungal genome, which provided the hypothetical reason for the variant phenotypes of the transformants. The successful creation of transformants with a single T-DNA tag insertion may help us to clone functional genes related to the metabolism and differentiation of Monascus spp., which will greatly facilitate the molecular analysis of this important fungus and the improvement of strains at the genetic level.  相似文献   

10.
Tobacco plants were transformed with derivatives of a binary vector pMON505 and two kanamycin resistant lines that were nopaline positive were selected for second transformation. The plasmids used for the second transformation were derivatives of pMON850 which carries the nopaline synthase gene in addition to a gene for gentamicin resistance. Insertion of each transgene was confirmed by Southern hybridization. Surprisingly, we found that more than 50% of the doubly transformed tobacco plants were nopaline negative. Tobacco plants that were transformed only by the second vector exhibited nopaline accumulation. DNA methylation patterns at the HpaII site in the promoter region of the nopaline synthase gene did not correlate with the nopaline phenotype. In some plant lines, seedlings of the R1 generation which segregated out the second T-DNA insertion recovered the nop+ phenotype. These results indicate that nopaline accumulation was inhibited by the presence of the second T-DNA.Abbreviations T-DNA transferred DNA - NPTII neomycin phosphotransferase II - uidA -glucuronidase - Km kanamycin - Gm gentamicin - nop+ nopaline positive - nop nopaline negative - MS medium, Murashige-Skoog medium  相似文献   

11.
Summary We investigated the potential of the Agrobacterium tumefaciens T-DNA as an insertional mutagen in Arabidopsis thaliana. Arabidopsis lines transformed with different T-DNA vectors were generated using a leaf disc infection procedure adapted for efficient selection on either kanamycin or hygromycin medium. A standardized screening procedure was developed for the detection of recessive mutations in T2 populations of regenerated and/or transformed lines. Recessive mutations originating from the tissue culture procedure occurred at a low frequency — between 2% and 5%. Within 110 transformed lines that contained a total of about 150 T-DNA inserts, one recessive mutation, named pfl, cosegregated with a specific T-DNA copy. This pfl mutation mainly affected the morphology of the first seedling leaves under normal growth conditions and was mapped to chromosome 1. No recombination between the pfl locus and the kanamycin resistance marker on the T-DNA was detected when screening F2 and F3 populations of a mutant crossed to the wild type. The maximal genetic distance between the pfl locus and the kanamycin resistance gene, determined as 0.4±0.4 cMorgan, strongly suggests that the pfl mutation is induced by the insertion of the T-DNA. Our finding of one T-DNA-linked recessive mutation in 110 transgenic lines indicates that T-DNA can be used for mutagenization of the Arabidopsis genome under tissue culture conditions.  相似文献   

12.
Summary We describe in this paper the construction and use of a set of novel Ti plasmid-derived vectors that can be used to produce transgenic plants. These vectors are based on one of two strategies: 1) double recombination into the wild-type Ti plasmid of genetic information flanked by two T-DNA fragments on a wide-host range plasmid; 2) the binary vector strategy. The vector based on the double recombination principle contains a kanamycin resistance gene for use as a plant selectable marker, a polylinker for the insertion of foreign genes, and a nopaline synthase gene. The vector was constructed such that a disarmed T-DNA results from the double recombination event. The binary vector combines several advantageous features including an origin of replication that is stable in Agrobacterium in the absence of selection, six unique sites for insertion of foreign genes, an intact nopaline synthase gene, and a kanamycin resistance marker for selection of transformed plant cells. All of these vectors have been used to produce tobacco plants transformed with a variety of foreign genes.  相似文献   

13.
Transformants of Arabidopsis thaliana can be generated without using tissue culture techniques by cutting primary and secondary inflorescence shoots at their bases and inoculating the wound sites with Agrobacterium tumefaciens suspensions. After three successive inoculations, treated plants are grown to maturity, harvested and the progeny screened for transformants on a selective medium. We have investigated the reproducibility and the overall efficiency of this simple in planta transformation procedure. In addition, we determined the T-DNA copy number and inheritance in the transformants and examined whether transformed progeny recovered from the same Agrobacterium-treated plant represent one or several independent transformation events. Our results indicate that in planta transformation is very reproducible and yields stably transformed seeds in 7–8 weeks. Since it does not employ tissue culture, the in planta procedure may be particularly valuable for transformation of A. thaliana ecotypes and mutants recalcitrant to in vitro regeneration. The transformation frequency was variable and was not affected by lower growth temperature, shorter photoperiod or transformation vector. The majority of treated plants gave rise to only one transformant, but up to nine siblings were obtained from a single parental plant. Molecular analysis suggested that some of the siblings originated from a single transformed cell, while others were descended from multiple, independently transformed germ-line cells. More than 90% of the transformed progeny exhibited Mendelian segregation patterns of NPTII and GUS reporter genes. Of those, 60% contained one functional insert, 16% had two T-DNA inserts and 15% segregated for T-DNA inserts at more than two unlinked loci. The remaining transformants displayed non-Mendelian segregation ratios with a very high proportion of sensitive plants among the progeny. The small numbers of transformants recovered from individual T1 plants and the fact that none of the T2 progeny were homozygous for a specific T-DNA insert suggest that transformation occurs late in floral development.National Research Council of Canada Publication No. 38003  相似文献   

14.
Summary Agrobacterium-mediated transformation of Arabidopsis, ecotype ‘Estland’, was established from root explants using kanamycin selection. Continuous light during callus and shoot induction phases was promotive for shoot regeneration, as compared to light/dark cycles. Use of optimized conditions for transformation led to the formation of kanamycin-resistant calluses (up to 77%) and transformed plantlets at a frequency of up to 45%. Southern analysis showed the presence of 1.2. or more T-DNA inserts in 33%, 50%, and 17% of the primary transformants, respectively. Mendelian, as well as non-Mendelian, inheritance patterns were obtained upon screening the progeny (T1) of various transformants for the expression of gus and nptII genes; the analysis of some of these transformants at the molecular level also corroborated the Mendelian inheritance pattern. Moreover, genotypes of the T1 progeny could be predicted on the basis of T2 progeny analysis.  相似文献   

15.
Summary The maize transposable element Ac has been introduced into potato via the T-DNA (transferred DNA) of Agrobacterium tumefaciens. Ac was inserted within the untranslated leader region of a neomycin phosphotransferase II (NPT-II) gene such that excision restored NPT-II activity. Two approaches to monitor Ac excision were used. (i) Using an Agrobacterium strain harbouring plasmid pGV3850::pKU3, leaf discs were selected on kanamycin (Km) after exposure to Agrobacterium. (ii) Using a strain containing plasmid pGV3850HPT::pKU3, the leaf discs were selected on hygromycin (Hm) and the resulting shoots were checked for NPT-II expression. Thirteen kanamycin resistant shoots transformed with pGV3850::pKU3 were isolated, suggesting that Ac had excised from the NPT-II gene. Out of 43 hygromycin resistant shoots transformed with pGV3850HPT::pKU3, 22 expressed the NPT-II gene, indicating that Ac had undergone excision in approximately 50% of the hygromycin resistant shoots. Southern analysis revealed that all kanamycin resistant plants contained the DNA restriction fragments expected when Ac excises from the NPT-II gene. The presence of Ac at new locations within the genomic DNA of several transformants was also detected.  相似文献   

16.
Seed viability, dormancy and germination efficiency are very important aspects of the life cycle of plants and their potential to survive and spread in the environment. To characterize the genes controlling these processes, we have devised a technique for the selection of mutants impaired in seed germination. Selection for such a trait is complicated by physiological factors that interact with these processes and affect seed germination efficiency. The distinction between low seed germination potential due to physiological factors that interfere with seed maturation or germination and germination deficiency due to genetic factors was based on screening for tagged mutations.Arabidopsis thaliana T-DNA primary transformants obtained by an in planta transformation technique are all heterozygotes. We screened for lack of germination of 1/4 of the seeds in the progeny of independent transformants, and simultaneously for the abnormal segregation (2:1 instead of 3:1) of a kanamycin resistance marker carried by the T-DNA inserted into the genome of these primary transformants in the plants that germinate. This yielded several mutants affected in the germination processes. One of the mutants, designated ABC33, was further characterized. Once the viable embryos from non-germinating seeds were removed from their testa, they grew and displayed a dwarf phenotype which could be complemented by providing gibberellic acid. A genetic and molecular analysis, based on the characterization of the flanking genomic sequences of the T-DNA insert, showed that ABC33 is a new loss-of-function allele at theGA 1 locus.  相似文献   

17.
Over 5000 transgenic families of Arabidopsis thaliana produced following seed transformation with Agrobacterium tumefaciens were screened for embryonic lethals, defectives, and pattern mutants. One hundred and seventy-eight mutants with a wide range of developmental abnormalities were identified. Forty-one mutants appear from genetic studies to be tagged (36% of the 115 mutants examined in detail). Mapping with visible markers demonstrated that mutant genes were randomly distributed throughout the genome. Seven mutant families appeared to contain chromosomal translocations because the mutant genes exhibited linkage to visible markers on two different chromosomes. Chromosomal rearrangements may therefore be widespread following seed transformation. DNA gel blot hybridizations with 34 tagged mutants and three T-DNA probes revealed a wide range of insertion patterns. Models of T-DNA structure at each mutant locus were constructed to facilitate gene isolation. The value of such models was demonstrated by using plasmid rescue to clone flanking plant DNA from four tagged mutants. Further analysis of genes isolated from these insertional mutants should help to elucidate the relationship between gene function and plant embryogenesis.  相似文献   

18.
AFLPTM is a new technique to generate large numbers of molecular markers for genetic mapping. The method involves the selective amplification of a limited number of DNA restriction fragments out of complex plant genomic DNA digests using PCR. With six primer combinations 264 segregating AFLP amplification products were identified in a diploid backcross population from non-inbred potato parents. The identity of an AFLP marker was specified by the primer combination of the amplification product and its size estimated in bases. The segregating AFLP amplification products were mapped by using a mapping population with 217 already known RFLP, isozyme and morphological trait loci. In general, the AFLP markers were randomly distributed over the genome, although a few clusters were observed. No indications were found that AFLP markers are present in other parts of the genome than those already covered by RFLP markers. Locus specificity of AFLP markers was demonstrated because equally sized amplification products segregating from both parental clones generally mapped to indistinguishable maternal and paternal map positions. Locus specificity of AFLP amplification products will allow to establish the chromosomal identity of linkage groups in future mapping studies.Since AFLP technology is a multi-locus detection system, it was not possible to identify the AFLP alleles which belong to a single AFLP locus. The consequences of a genetic analysis based on single alleles, rather than on loci with two or more alleles on mapping studies using progenies of non-inbred parents are discussed.  相似文献   

19.
Unusual gene interactions were observed in several doubly transformed tobacco plants which were obtained following sequential transformation steps using two T-DNAs encoding different selection and screening markers. The expression of T-DNA-I, which encoded kanamycin resistance (Kanr) and nopaline synthase (NOS), was suppressed in some, but not all, of the double transformants after the introduction of T-DNA-II, which encoded hygromycin resistance (Hygr) and octopine synthase (OCS). Double transformants in which T-DNA-I had been inactivated could produce KanrNOS+ progeny, but these were shown to lack T-DNA-II, thus establishing the role of this T-DNA in the suppression of T-DNA-I. Reversible cytosine methylation of the promoters of T-DNA-I genes was shown to correlate with their activation/inactivation cycle. In this paper we pursue further the questions of the mechanism of suppression of T-DNA-I genes by T-DNA-II, and also the timing and extent of demethylation of T-DNA-I promoters in Kanr progeny following the loss of T-DNA-II. We propose that the suppression is due to the competition between homologous regions on each T-DNA for binding to nuclear sites with fixed locations. We further suggest that incomplete demethylation patterns of T-DNA-I promoters in Kanr progeny reflect the existence in the shoot apex meristem of two cell populations, which have either methylated or unmethylated T-DNA-I promoters, respectively. Thus, Kanr progeny are epigenetic chimeras with respect to the expression of T-DNA-I genes.  相似文献   

20.
An improved method to identify the T-DNA insertion site in transgenic Arabidopsis thaliana (Columbia ecotype) genome was presented. Firstly, the pre-adaptor was amplified by PCR from the plasmid pLASC11.12.8 and digested by HindIII to produce the adaptor. After treated with calf intestine alkaline phosphatase, the adaptor was ligated to the genomic restriction digested fragment with the same restriction endonucleases. Then two rounds of PCR (nested-PCR) were carried out and an unknown sequence between the T-DNA and the adaptor was amplified. Further analysis would reveal the accurate site of T-DNA insertion into transgenic A. thaliana genome. This text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号