首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Gleeble-1500热模拟试验机对30%SiCP/2024A1复合材料在温度为623~773 K、应变速率为0.01~10 s-1变形条件下热变形流变行为进行了研究。由试验得出变形过程中的真应力真应变曲线,建立热变形本构方程和功率耗散图。结果表明,复合材料的流变应力随温度的升高而降低,随应变速率的增大而升高,说明该复合材料是一个正应变速率敏感的材料。该复合材料热压缩变形时的流变应力行为可采用Zener-Hollomon参数的双曲正弦形式来描述,热变形激活能Q为571.377 kJ/mol。高温高应变速率条件下的功率耗散系数大,该变形区发生了组织转变。  相似文献   

2.
研究了2vol%Mg2B2O5w/6061铝合金复合材料在热变形过程中,不同变形温度、应变速率下流变应力的变化,并通过计算机拟合建立了热压缩变形本构方程。结果表明,压缩变形过程中复合材料的流变应力随着变形温度的升高而降低,随着应变速率的增大而升高。当应变速率在0.01~1.00/s之间时,材料呈现出动态回复特征。复合材料在热变形过程中的应变速率和流变应力关系符合双曲正弦函数关系。  相似文献   

3.
研究了2vol%Mg2B2O5w/6061铝合金复合材料在热变形过程中,不同变形温度、应变速率下流变应力的变化,并通过计算机拟合建立了热压缩变形本构方程。结果表明,压缩变形过程中复合材料的流变应力随着变形温度的升高而降低,随着应变速率的增大而升高。当应变速率在0.011.00/s之间时,材料呈现出动态回复特征。复合材料在热变形过程中的应变速率和流变应力关系符合双曲正弦函数关系。  相似文献   

4.
采用真空热压烧结法制备了纳米Al2O3弥散强化铜为基体,W颗粒为增强相的W(50)/Cu-Al2O3新型复合材料。在Gleeble-1500D热模拟机上对真空热压烧结W(50)/Cu-Al2 O3复合材料进行等温热压缩实验,研究了在变形温度为650~950℃;变形速率为0.01~5 s-1;最大真应变为0.7条件下的流变应力行为。结果表明:在实验条件下,复合材料W(50)/Cu-Al2O3存在明显的动态再结晶特征,即变形初期,流变应力随着应变量的增大而迅速增大,达到峰值之后流变应力逐渐趋于平稳,不随应变的增加而明显变化。变形温度和变形速率对流变应力影响显著,随着温度的升高和应变速率的减小,峰值应力逐渐减小,并且在晶界交叉处出现再结晶晶粒,并逐渐增多。复合材料的主要软化机制为动态再结晶。建立了复合材料高温变形时的流变应力本构方程,并确定了热变形激活能Q为176.05 kJ/mol。  相似文献   

5.
采用热压缩试验研究了SiC颗粒增强镁基复合材料在应变速率为0.1~10 s-1、变形温度为803~843 K时的热成形性能,并在实验数据分析的基础上根据真应力-真应变曲线,计算出复合材料的本构方程及变形激活能Q。结果表明,复合材料在高温下的流变应力较低,峰值应力与变形温度、应变速率之间的关系在低应力区符合指数关系。该复合材料的激活能随着应变速率的增大而增大。  相似文献   

6.
采用Gleeble3500热模拟试验机对Ti2AlC/TiAl(Nb)复合材料进行高温压缩实验,实验温度范围为1000℃~1150℃,应变速率范围为10-3s-1~10-1s-1,工程压缩应变为50%,得到复合材料高温压缩真应力-真应变曲线。结果表明,Ti2AlC/TiAl(Nb)复合材料的高温变形流变应力对温度及应变速率敏感;流变应力随应变速率的增大而增大,随温度的升高而减小,可用位错-颗粒交互作用模型解释复合材料的应力-应变行为;Zenner-Hollomon参数的指数函数能够较好的描述该合金高温变形时的流变应力行为。建立的本构方程为ε=9.31×1011[sinh(0.0044σ)]2.52exp[-366.2/(RT)],其变形激活能为366.2kJ/mol。  相似文献   

7.
利用Gleeble-1500D型热模拟试验机在变形温度为650~950℃、应变速率为0.001~1 s-1、变形量为60%的条件下对10%Cr/Cu复合材料进行热模拟压缩试验。依据热模拟实验数据,绘制出10%Cr/Cu复合材料的流变应力曲线,分析变形温度、应变速率对流变应力的影响。用线性回归法确定出10%Cr/Cu复合材料的热变形激活能(Q)和高温变形本构关系模型,并引入应变对模型进行修正,最后通过误差分析验证了方程的可靠性。结果表明:10%Cr/Cu复合材料的流变应力随温度的升高和应变速率的降低而减少;计算得出10%Cr/Cu复合材料的热变形激活能为260.7 kJ/mol;建立了复合材料的本构方程,对构建的本构方程模型进行误差验证得出平均相对误差为7.39%;利用Avrami模型求出了复合材料的动态再结晶分数模型,该模型表明在高温和较低应变速率条件下有利于该材料发生动态再结晶。  相似文献   

8.
在Gleeble-3500热模拟机上采用等温压缩实验研究了ZnAl10Cu2合金在温度为210~300℃、应变速率为10-2~10 s-1条件下的热变形行为,获得了该合金热变形过程中的真应力-应变曲线.结果表明:ZnAl10Cu2合金的峰值流变应力随温度升高而降低,随应变速率的提高而增大.通过双曲正弦模型确定了该合金的...  相似文献   

9.
利用Gleeble-1500D热力模拟试验机,在温度为450~850℃、应变速率为0.001~1.000s-1、真应变量为0.7的条件下,对TiC含量为30%的TiC/Cu-Al2O3复合材料进行了热压缩试验,研究了其流变应力及本构方程。结果表明,材料的流变应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加,属于温度和应变速率敏感材料;在真应力-应变曲线基础上,建立的TiC/Cu-Al2O3复合材料高温本构模型可较好地表征其高温流变特征。  相似文献   

10.
采用Gleeble-1500D热模拟试验机在300~450°C、0.001~1.0 s-1条件下对不同铝片层厚度的Al2O3/Al复合材料进行变形行为研究。实验结果表明,在设定的温度下,流变应力随着应变速率的增加而增加,而在设定的应变速率下,流变应力随着温度的升高而降低。在所采用的实验条件下,片层Al2O3/Al复合材料的高温流变行为可以用双曲正弦函数来描述。Al2O3/Al-2μm和Al2O3/Al-1μm复合材料在进行真应变为0.6的热变形时最优加工工艺参数分别为300~330°C,0.007~0.03 s-1和335~360°C,0.015~0.06 s-1。而热加工图也明确了此两种复合材料的流变失稳区。  相似文献   

11.
采用Gleeble-1500D热模拟机高温等温压缩试验,研究了新型反应堆中子吸收材料-碳化硼-铝硅复合材料在应变速率为0.1~10s-1、变形温度为300~500℃条件下的流变应力特征.结果表明:该材料在试验条件下压缩变形时均存在稳态流变特征,应变速率和变形温度强烈影响试验材料流变应力;该流变应力随应变速率的提高而增大,随变形温度的升高而降低;采用Zener-Hollomon参数的双曲正弦函数描述该复合材料高温变形的峰值流变应力,获得峰值流变应力解析式,其热变形激活能为236.248 kJ/mol.  相似文献   

12.
采用真空热压-内氧化烧结法成功制备Ti C粒径分别为3.2和25μm的30 vol%Ti C/Cu-Al2O3复合材料,对其进行了显微组织观察分析和性能测试;并利用Gleeble-1500D热力模拟试验机,研究了该复合材料在变形温度为450~850℃,应变速率为0.001~1 s-1条件下的热变形行为。结果表明:随着Ti C粒径的增大,复合材料的相对密度和导电率有所增加,而硬度略有下降。Ti C/Cu-Al2O3复合材料的真应力-真应变曲线主要以动态再结晶机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;高温变形条件下30 vol%Ti C/Cu-Al2O3复合材料流变应力本构方程可以用双曲线正弦方程和Z参数描述;热变形激活能随Ti C粒径增大而略有下降,其值分别为269.059 k J/mol(3.2μm)和234.288 k J/mol(25μm)。  相似文献   

13.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

14.
采用机械合金化和粉末冶金法制备了Al_2O_3颗粒增强铜基复合材料,通过失重法对所制得的复合材料分别在不同的酸腐蚀条件下的腐蚀速率进行了测试,并采用扫描电镜对试样的腐蚀表面进行了观察。结果表明,Al_2O_3/Cu复合材料的腐蚀速率随温度和腐蚀介质浓度的增加而显著增大,充分细化Al_2O_3颗粒和适当延长球磨时间有利于改善其耐蚀性能。  相似文献   

15.
30CrNi3MoV钢的热变形行为及热加工图   总被引:1,自引:0,他引:1       下载免费PDF全文
储滔  沈慧  斯庭智 《金属热处理》2020,45(10):24-30
采用Gleeble-3500热模拟试验机对30CrNi3MoV钢进行单向热压缩试验,研究了其在变形温度950~1150 ℃、应变速率0.01~10 s-1的热变形行为,构建了应变补偿型流变应力本构方程,并绘制出该钢的热加工图。结果表明,30CrNi3MoV钢真应力-真应变曲线有3种不同特征:高温小应变速率时,表现为典型的动态再结晶过程;低温小应变速率时,曲线为动态回复特征;应变速率较大时,应力随应变的增大而增大,无明显的峰值应力。采用5次多项式拟合构建的应变耦合流变应力本构方程具有高的精确度,采用该方程获得的预测值与试验值的平均相对误差为3.2%,相关性系数R值为0.993。从热加工图中得到试验钢最佳的热加工工艺参数范围是:变形温度为1020~1150 ℃、应变速率为0.03~0.35 s-1。  相似文献   

16.
利用Gleeble-1500热力模拟试验机,对低体积分数Mg2B2O5w/6061A1复合材料进行热压缩变形试验,变形温度为300~550℃,变形速率为0.01 ~ 10 s-1.结果表明:流变应力随应变速率的增加而增大,随温度升高而减小;流变应力开始随应变增加而增大,达到一定值后趋于平稳,表现出动态回复的特征.经过推导和计算,确定Mg2B2O5w/6061Al复合材料高温变形时的流变应力行为可采用含Zener-Hollomon参数的双曲正弦函数来描述.  相似文献   

17.
在Gleeble-1500D热模拟实验机上对30ZrCp/W复合材料进行高温压缩实验,变形温度和应变速率分别为800℃~1 200℃和10-3 s^-1~1 s^-1,研究其高温压缩变形的流变应力行为.研究表明:随变形温度升高,复合材料的流变应力下降,在10-3s^-1和1200℃下,抗压强度为948.7 MPa.在800℃下发生伪塑性变形,未达到预设变形量,真应力-真应变曲线上表现出的塑性为伪塑性,其是由微裂纹的萌生-钝化引起的.随变形温度升高,复合材料发生动态回复再结晶.随应变速率升高,真应力-真应变曲线形状从“锯齿”型向“平滑”型转变.复合材料对应变速率不敏感,随应变速率升高,复合材料的流变应力略有升高.在800℃和1s^-1下,复合材料的抗压强度为1176.9MPa.用Arrhenius方程描述复合材料在1000℃~1200℃的热变形行为,变形激活能为811.4 kJ/mol.  相似文献   

18.
针对原位合成TiB2/Al-Si-Mg-Cu复合材料,应用Gleeble-3500热模拟机进行等温压缩试验,研究其在变形温度300~500℃和应变速率10-3~10s-1的热变形行为.结果表明:该复合材料在高温压缩时均存在稳态流变特征,且属于正应变速率敏感材料;在同一变形温度下,应变速率越高,其流变应力越大;在同一应变速率下,变形温度越低,其流变应力越大.  相似文献   

19.
采用Gleeble-3500热模拟实验机对Ti-Al-Cu-Si钛合金在温度为1000 ̄1200℃之间,应变速率为0.005 ̄5/s之间,变形程度为40% ̄70%的条件下进行了高温热压缩实验研究。分析了实验合金高温变形时流变应力与应变速率、变形温度及变形程度之间的关系以及组织变化,为优化变形加工条件提供依据。实验结果表明:在恒应变速率的条件下,合金的真应力水平随着温度的升高而降低,合金的稳态流变应力随应变速率的增大而减小,随变形程度的增大真应力减小。  相似文献   

20.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号