首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
In view of the rapidly growing trend of migrating customers from traditional wired phones to mobile phones and then to VoIP services in the recent past, there is a tremendous demand for wireless technologies to support VoIP, specially on WiFi technologies which have already matured commercially. This has put forth great research challenges in the area of wireless VoIP. In this article we have addressed two core issues, efficient silence suppression and call admission control, in QoS provisioning for VoIP services in WiFi networks. In this connection we present a QoS-aware wireless MAC protocol called hybrid contention-free access (H-CFA) and a VoIP call admission control technique called the traffic stream admission control (TS-AC) algorithm. The H-CFA protocol is based on a novel idea that combines two contention-free wireless medium access approaches, round-robin polling and TDMA-like time slot assignment, and provides substantial multiplexing capacity gain through silence suppression of voice calls. The TS-AC algorithm ensures efficient admission control for consistent delay bound guarantees and further maximizes the capacity through exploiting the voice characteristic so that it can tolerate some level of non-consecutive packet loss. We expose the benefits of our schemes through numerical results obtained from simulations.  相似文献   

2.
A call admission control framework for voice over WLANs   总被引:1,自引:0,他引:1  
In this article a call admission control framework is presented for voice over wireless local area networks (WLANs). The framework, called WLAN voice manager, manages admission control for voice over IP (VoIP) calls with WLANs as the access networks. WLAN voice manager interacts with WLAN medium access control (MAC) layer protocols, soft-switches (VoIP call agents), routers, and other network devices to perform end-to-end (ETE) quality of service (QoS) provisioning and control for VoIP calls originated from WLANs. By implementing the proposed WLAN voice manager in the WLAN access network, a two-level ETE VoIP QoS control mechanism can be achieved: level 1 QoS for voice traffic over WLAN medium access and level 2 QoS for ETE VoIP services in the networks with WLANs as the local access. The implementation challenges of this framework are discussed for both level 1 and level 2. Possible solutions to the implementation issues are proposed and other remaining open issues are also addressed.  相似文献   

3.
Design of an efficient wireless medium access control (MAC) protocol is a challenging task due to the time‐varying characteristics of wireless communication channel and different delay requirements in diverse applications. To support variable number of active stations and varying network load conditions, random access MAC protocols are employed. Existing wireless local area network (WLAN) protocol (IEEE 802.11) is found to be inefficient at high data rates because of the overhead associated with the contention resolution mechanism employed. The new amendments of IEEE 802.11 that support multimedia traffic (IEEE 802.11e) are at the expense of reduced data traffic network efficiency. In this paper, we propose a random access MAC protocol called busy tone contention protocol (BTCP) that uses out‐of‐band signals for contention resolution in WLANs. A few variants of this protocol are also proposed to meet the challenges in WLAN environments and application requirements. The proposed BTCP isolate multimedia traffics from background data transmissions and gives high throughput irrespective of the number of contending stations in the network. As a result, in BTCP, admission control of multimedia flows becomes simple and well defined. Studies of the protocol, both analytically and through simulations under various network conditions, have shown to give better performance in comparison with the IEEE 802.11 distributed coordination function. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The demand for multimedia services, such as voice over Internet Protocol, video on demand, information dissemination, and ?le sharing, is increasing explosively in wireless local area networks. These multimedia services require a certain level of QoS. Thus, it is important to provide QoS for multimedia applications. IEEE 802.11e tries to meet the QoS requirement of multimedia services by using Enhanced Distributed Channel Access. This gives more weights to high‐priority tra?c than low‐priority tra?c in accessing the wireless channel. However, Enhanced Distributed Channel Access suffers from many problems such as low aggregate throughput, high collision rates, and ineffective QoS differentiation among priority classes. In this paper, we propose a new medium access scheme, the Arbitration Interframe Space‐controlled Medium Access Control (AC‐MAC), that guarantees absolute priority in 802.11 wireless networks. In AC‐MAC, the AIFS and contention window values are controlled, so that a higher‐priority tra?c can preferentially access and effectively utilize the channel. Extensive simulations show that AC‐MAC can perfectly provide absolute priority and good throughput performance regardless of the number of contending nodes. In the simulation of voice over Internet Protocol service, AC‐MAC provides effective QoS differentiation among services and also meets the high level of QoS requirements. AC‐MAC also adapts quickly in a dynamic environment and provides good fairness among the nodes belonging to the same priority class. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Recent years have seen greatly increasing interests in voice over IP in wireless LANs, in which the IEEE 802.11 distributed coordination function protocol or enhanced DCF protocol is used. However, since both DCF and EDCF are contention-based medium access control protocols, it is difficult for them to support the strict QoS requirement for VoIP. Therefore, in this article we propose a novel call admission control scheme that runs at the MAC layer to support VoIP services. The call admission control mechanism regulates voice traffic to efficiently coordinate medium contention among voice sources. The rate control mechanism regulates non-voice traffic to control its impact on the performance of voice traffic. Extensive simulations demonstrate that the proposed schemes can well support statistical QoS guarantees for voice traffic and maintain stable high throughput for non-voice traffic at the same time.  相似文献   

6.
A contention‐based wireless ad hoc medium access control (MAC) protocol, such as carrier sense multiple access with collision avoidance (CSMA/CA), has excellent efficiency when the system is light loaded. The main drawback of such protocols is their inefficiency and unbounded delay when the system load is heavy. On the other hand, a contention‐free MAC protocol, such as token passing, has a better and fair throughput when the system is heavy loaded. The main drawback of such protocols is their inefficiency when only a small amount of users want to transmit. In this paper, we propose a new load awareness single‐hop wireless ad hoc MAC protocol (which is called the LA protocol) that exploits the benefits of both contention‐based and contention‐free protocols. A contention‐based MAC protocol is used when the system is light loaded and a contention‐free one is used otherwise. Our LA protocol, which operates in a distributed fashion and is fully compatible with the IEEE 802.11 wireless local area network (WLAN) standard, can switch smoothly between the contention‐based protocol and the contention‐free one. Simulation results show that our protocol indeed extracts the better part of two kinds of protocols. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The exponential growth in the demand of voice over internet protocol (VoIP) services along with the increasing demand for mobility in VoIP services has attracted great research efforts towards provisioning of VoIP services in IEEE 802.11‐based Wireless LANs (WiFi networks). We address one of the important research problems, namely, the quality of service (QoS)‐aware efficient silence suppression in the bursty voice traffic, for provisioning VoIP services in WiFi networks. The research works in the recent literature on silence suppression in voice calls have been surveyed categorising them on how the activity arrival is notified to the access point (AP). In most of the recent schemes, notification of uplink activity arrival is done through contention based medium access mechanisms such as the distributed coordination function (DCF). Contention‐based medium access causes non‐deterministic delays, therefore such schemes are not suited to voice traffic which require strict delay bound guarantees. This paper focuses on the schemes which do not use contention based approaches for silence suppression in voice traffic. Analytical performance evaluation and comparison of such schemes is carried out. Two very important performance metrics are modelled mathematically. One is the expected polling overhead time that the schedulers in these schemes can save per voice call during one voice activity cycle as compared to that in the round‐robin polling scheduler. The other is the expected unnecessary wireless channel access delay that a typical first talk‐spurt frame experiences due to the specific design of each scheme. The numerical results of this evaluation lead us to the conclusion whether or not and to what extent each of these schemes is viable. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
IEEE 802.11 wireless local area networks (WLANs) have reached an important stage and become a common technology for wireless access due to its low cost, ease of deployment, and mobility support. In parallel with the extensive growth of WLANs, the development of an efficient medium access control protocol that provides both high throughput performance for data traffic and quality of service support for real‐time applications has become a major focus in WLAN research. The IEEE 802.11 Distributed Coordination Functions (DCF/EDCA) provide contention‐based distributed channel access mechanisms for stations to share the wireless medium. However, performance of these mechanisms may drop dramatically because of high collision probabilities as the number of active stations increases. In this paper, we propose an adaptive collision‐free MAC adaptation. The proposed scheme prevents collisions and allows stations to enter the collision‐free state regardless of the traffic load (saturated or unsaturated) and the number of stations on the medium. Simulation results show that the proposed scheme dramatically enhances the overall throughput and supports quality of service for real‐time services over 802.11‐based WLANs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
IEEE 802.11 is one of the most influential wireless LAN (WLAN) standards. Point coordination function (PCF) is its medium access control (MAC) protocol with real‐time traffic (rt‐traffic) quality‐of‐service (QoS) guarantees. In PCF, it is very likely that non‐real‐time traffic (nrt‐traffic) will use the contention free period (CFP) that should be dedicated to traffic having higher priority such as rt‐traffic. Therefore, a modified PCF protocol called MPCF, which is based on hub polling and an integrated QoS differentiation, is presented in this paper. With the integrated QoS differentiation, MPCF can prioritize bandwidth requests according to service classes and QoS requirements. With hub polling, MPCF can reduce the bandwidth for control frames and improve the network throughput. A simple and accurate analytical model is derived and presented in this paper to calculate the system throughput of MPCF. Simulation results show that MPCF protocol is much better than PCF in terms of system capacity and rt‐traffic QoS guarantees. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In order to support the quality‐of‐service (QoS) requirements for real‐time traffic over broadband wireless networks, advanced techniques such as space‐time diversity (STD) and multicarrier direct‐sequence code division multiple access (MC‐DS‐CDMA) are implemented at the physical layer. However, the employment of such techniques evidently affects the QoS provisioning algorithms at the medium access control (MAC) layer. In this paper, we propose a space‐time infrastructure and develop a set of cross‐layer real‐time QoS‐provisioning algorithms for admission control, scheduling, and subchannel‐allocations. We analytically map the parameters characterizing the STD onto the admission‐control region guaranteeing the real‐time QoS. Our analytical analyses show that the proposed algorithms can effectively support real‐time QoS provisioning. Also presented are numerical solutions and simulation results showing that the STD can significantly improve the QoS provisioning for real‐time services over wireless networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
IEEE 802.11, the standard of wireless local area networks (WLANs), allows the coexistence of asynchronous and time-bounded traffic using the distributed coordination function (DCF) and point coordination function (PCF) modes of operations, respectively. In spite of its increasing popularity in real-world applications, the protocol suffers from the lack of any priority and access control policy to cope with various types of multimedia traffic, as well as user mobility. To expand support for applications with quality-of-service (QoS) requirements, the 802.11E task group was formed to enhance the original IEEE 802.11 medium access control (MAC) protocol. However, the problem of choosing the right set of MAC parameters and QoS mechanism to provide predictable QoS in IEEE 802.11 networks remains unsolved. In this paper, we propose a polling with nonpreemptive priority-based access control scheme for the IEEE 802.11 protocol. Under such a scheme, modifying the DCF access method in the contention period supports multiple levels of priorities such that user handoff calls can be supported in wireless LANs. The proposed transmit-permission policy and adaptive bandwidth allocation scheme derive sufficient conditions such that all the time-bounded traffic sources satisfy their time constraints to provide various QoS guarantees in the contention free period, while maintaining efficient bandwidth utilization at the same time. In addition, our proposed scheme is provably optimal for voice traffic in that it gives minimum average waiting time for voice packets. In addition to theoretical analysis, simulations are conducted to evaluate the performance of the proposed scheme. As it turns out, our design indeed provides a good performance in the IEEE 802.11 WLAN's environment, and can be easily incorporated into the hybrid coordination function (HCF) access scheme in the IEEE 802.11e standard.  相似文献   

12.
The emerging vehicular networks are targeted to provide efficient communications between mobile vehicles and fixed roadside units (RSU), and support mobile multimedia applications and safety services with diverse quality of service (QoS) requirements. In this paper, we propose a busy tone based medium access control (MAC) protocol with enhanced QoS provisioning for life critical safety services. By using busy tone signals for efficient channel preemption in both contention period (CP) and contention free period (CFP), emergency users can access the wireless channel with strict priority when they compete with multimedia users, and thus achieve the minimal access delay. Furthermore, through efficient transmission coordination on the busy tone channel, contention level can be effectively reduced, and the overall network resource utilization can be improved accordingly. We then develop an analytical model to quantify the medium access delay of emergency messages. Extensive simulations with Network Simulator (NS)-2 validate the analysis and demonstrate that the proposed MAC can guarantee reliable and timely emergency message dissemination in a vehicular network.  相似文献   

13.
This paper presents a terminal‐assisted frame‐based packet reservation multiple access (TAF‐PRMA) protocol, which optimizes random access control between heterogeneous traffic aiming at more efficient voice/data integrated services in dynamic reservation TDMA‐based broadband access networks. In order to achieve a differentiated quality‐of‐service (QoS) guarantee for individual service plus maximal system resource utilization, TAF‐PRMA independently controls the random access parameters such as the lengths of the access regions dedicated to respective service traffic and the corresponding permission probabilities, on a frame‐by‐frame basis. In addition, we have adopted a terminal‐assisted random access mechanism where the voice terminal readjusts a global permission probability from the central controller in order to handle the ‘fair access’ issue resulting from distributed queuing problems inherent in the access network. Our extensive simulation results indicate that TAF‐PRMA achieves significant improvements in terms of voice capacity, delay, and fairness over most of the existing medium access control (MAC) schemes for integrated services.  相似文献   

14.
The IEEE 802.11 wireless local area network (WLAN) media access control (MAC) specification is a hybrid protocol of random access and polling when both distributed coordination function (DCF) and point coordination function (PCF) are used. Data traffic is transmitted with the DCF, while voice transmission is carried out with the PCF. Based on the performance analysis of the MAC protocol for integrated data and voice transmission by simulation, this paper puts forward a self‐adaptive transmission scheme to support multi‐service over the IEEE 802.11 WLAN. The simulation results show that, on the premise of satisfying the maximum allowable delay of packet voice, the self‐adaptive transmission scheme can improve the data traffic performance and increase the WLAN capacity through dynamic and appropriate adjustment of the protocol parameters. Especially, voice traffic is sensitive to delay jitter, and the self‐adaptive scheme can effectively decrease it. Finally, it is worth noting that the adaptive scheme is easy to be realized, whereas no change in the MAC protocol is needed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents our experiences with SoftToken protocol, a new contention‐free medium access control protocol for wireless local area network. This new mechanism adds a token‐passing procedure on top of Institute of Electrical and Electronics Engineers 802.11 for coordinating transmissions and avoiding collisions. With this extension, it becomes possible to offer differentiated services in a deterministic manner. In this paper, we provide a thorough performance evaluation of SoftToken in terms of its scalability, robustness and efficiency in comparison with Institute of Electrical and Electronics Engineers 802.11 and a time division multiple access (TDMA)‐based Wi‐Fi extension called Soft‐TDMA. Our evaluation is based on experiments run on different test beds covering different scenarios in a wired virtual network environment and practical wireless environments supporting different types of traffic. The results show that SoftToken indeed provides better QoS performance in scenarios that require service differentiation (e.g. mixed voice over Internet protocol and best effort traffic scenarios). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The complementary characteristics of wireless local area networks (WLANs) and wideband code division multiple access (CDMA) cellular networks make it attractive to integrate these two technologies. How to utilize the overall radio resources optimally in this heterogeneous integrated environment is a challenging issue. This paper proposes an optimal joint session admission control scheme for multimedia traffic that maximizes overall network revenue with quality of service (QoS) constraints over both WLANs and CDMA cellular networks. WLANs operate under IEEE 802.11e medium access control (MAC) protocol, which supports QoS for multimedia traffic. A cross-layer optimization approach is used in CDMA networks taking into account both physical layer linear minimum mean square error (LMMSE) receivers and network layer QoS requirements. Numerical examples illustrate that the network revenue earned in the proposed joint admission control scheme is significantly more than that when the individual networks are optimized independently.  相似文献   

17.
Wireless LAN technology has been shown to he a revolutionary development during the last decade. Recently popularized IEEE 802.11a/g-based products can support up to 54 Mb/s physical layer rate and provide wireless access to the Internet. However, in order to deal robustly with the unreliable wireless nature, the 802.11 medium access control protocol has a relatively large overhead and hence, the throughput performance is much worse than the underlying physical layer rate. Moreover, along with many emerging applications and services over WLANs, such as voice over WLAN and audio/video streaming, the demand lor faster and higher- capacity WLANs has been growing recently. In this article, we propose a new medium access control protocol for the next-generation high-speed WLANs. The proposed medium access control, called multi-user polling controlled channel access, is composed of two components: multi-layer frame aggregation, which performs aggregation at both the medium access control and the physical layers; and multi-user polling, used to reduce the contention overhead and in turn, achieve higher network utilization. Multi-user polling controlled channel access is compared with the 802.11e-enhanced distributed channel access medium access control. Highly enhanced medium access control efficiency can be achieved by applying multi-user polling controlled channel access. We show the improved medium access control performance in terms of the aggregate throughput of non-QoS Hows with relevant QoS requirements.  相似文献   

18.
Providing quality‐of‐service (QoS) assurances in a mobile ad hoc network (MANET) is difficult due to node mobility, contention for channel access, a lack of centralised coordination, and the unreliable nature of the wireless channel. QoS‐aware routing (QAR) and admission control (AC) protocols comprise two of the most important components of a system attempting to provide QoS guarantees in the face of the above‐mentioned difficulties. This paper presents a comparative study, utilising a realistic shadow fading channel, of the performance of several state‐of‐the‐art amalgamated QAR‐AC protocols, which are designed for providing throughput guarantees to applications. The advantages and drawbacks of their particular features are highlighted. For an environment where link quality varies rapidly, the results of the study highlight the ineffectiveness of previously‐proposed methods of relying merely on the success of route discovery to perform AC, of relying on the exceeding of the MAC layer retransmission count for link failure detection, of existing congestion detection schemes and of careful re‐admission of data sessions rather than fast re‐routing after shadowing‐induced link failures. Based on the lessons learnt, design guidelines for future QAR and AC protocols operating in a mobile shadow‐fading‐afflicted environment are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A medium access control (MAC) protocol for wireless mobile networks that supports integrated services and provides quality of service (QoS) support is presented and evaluated via simulation. A controlled random access protocol which allows all terminals to dynamically share a group of spread spectrum spreading codes is used. The protocol provides mobile terminals the access control required for efficient transfer of integrated traffic with QoS guarantees. Two service classes are provided; "best-effort" service, with priority queueing, and reserved bandwidth circuit service. The performance of the protocol is evaluated via simulation for traffic consisting of integrated voice, data and compressed video. The performance assessment measure is packet delay.  相似文献   

20.
Multimedia over IEEE 802.11 wireless local area networks (WLANs) has recently been the focus of many researchers due to its rapidly increasing popularity. Unlike their best-effort counterparts, multimedia applications have quality of service (QoS) needs typically expressed in terms of the maximum allowed delay and/or the minimum required throughput. Therefore, prior to accepting a multimedia application, the network must assure the satisfaction of its QoS requirements. In this paper, we develop a mechanism that can be used to control the admissibility of multimedia applications into WLANs. To develop the proposed mechanism, we first derive an analytical approximation of the delay experienced by packets when travelled through these networks. The analytical approximation of the delay is then used to propose an admission control mechanism for the enhanced distributed channel access (EDCA) method used by the hybrid coordination function (HCF) of IEEE 802.11e. The proposed delay-based admission control mechanism is validated via simulations of voice traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号