首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile sonochemical approach was applied for the large scale synthesis of iron oxide magnetic nanoparticles (NPs) using inexpensive and non-toxic metal salts as reactants. The as-prepared magnetic iron oxide NPs has been characterized by XRD, TEM, EDS, and VSM. X-ray diffraction (XRD) and EDS analysis revealed that Fe3O4 NPs have been successfully synthesized in a single reaction by this simple method. Transmission electron microscopy (TEM) data demonstrated that the particles were narrow range in size distribution with 11 nm average particle size. Moreover, TEM measurements also show that the synthesized nanoparticles are almost spherical in shape. The magnetization curve from vibrating sample magnetometer (VSM) measurement shows that as-synthesized NPs were nearly superparamagnetic in magnetic properties with very low coercivity, and magnetization values were 80 emu/g, which is very near to the bulk value of iron oxide. The estimated value of mass susceptibility of as-synthesized nanoparticles is Xg = 5.71 × 10− 4 m3/kg.  相似文献   

2.
The present study follows a novel strategy for the preparation of superparamagnetic nanoparticles of cross-linked starch impregnated homogeneously with nanosized iron oxide. The prepared magnetic nanoparticles were characterized by infra-red (FTIR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction and magnetization studies. The size of the magnetic polymeric particles was found to lie in the range of 20–80 nm, and they exhibited superparamagnetic properties. The particles were allowed to swell in phosphate buffer saline (PBS) and the influence of factors such as chemical composition of nanoparticles, pH and temperature of the swelling bath and applied magnetic field was investigated on the water intake capacity of the nanoparticles. The prepared nanoparticles showed potential to provide a possible option for controlled and targeted delivery of anticancer drugs, applying external magnetic field.  相似文献   

3.
Submicron iron particles were obtained by the reduction of co-precipitated superparamagnetic iron oxide nanoparticles under hydrogen atmosphere. The reduction was carried out at the temperatures ranging from 200 to 1000 °C. The magnetic properties were investigated in accordance with the structural properties. According to the X-ray diffraction patterns, the increase of crystallization was followed by the conversion from iron oxide to iron and also the particle size increased as the reduction temperature increased. Morphology observed by transmission electron microscope showed that the particles were individually seen at low temperatures; however, they stacked together and became larger at high temperatures. Magnetic measurements with a vibrating sample magnetometer disclosed that the saturation magnetization steadily increased with increasing temperature and almost stabilized at 800 °C. Highest saturation magnetization obtained by the reduction process is ~211 emu/g, which is close to that of bulk iron. It is disclosed that, at all temperatures, saturation magnetizations obtained from magnetic measurements were found to be compatible with the structural changes caused by reduction temperature.  相似文献   

4.
Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR.  相似文献   

5.
磁性羧甲基化壳聚糖纳米粒子的制备与表征   总被引:1,自引:1,他引:0  
以化学共沉淀法制备了Fe3O4纳米粒子,壳聚糖经羧甲基化改性后接枝在Fe3O4颗粒表面,得到了磁性羧甲基化壳聚糖(Fe3O4/CMC)纳米粒子.利用透射电镜(TEM)、X射线衍射(XRD)、傅立叶红外光谱(FT-IR)及磁性测试对产物进行了表征.TEM表明Fe3O4纳米粒子被CMC包覆,粒径约10 nm;XRD分析表明复合纳米粒子中磁性物质为Fe3O4;FT-IR表明壳聚糖发生羧甲基反应以及在Fe3O4表面的接枝反应.Fe3O4/CMC纳米粒子具有超顺磁性,比饱和磁化强度25.73 emu/g,有良好的磁稳定性.  相似文献   

6.
In this work we applied a new route to synthesize magnetic iron oxide nanoparticles into alginate polymer for future application as drug delivery system activated by magnetic external stimuli. Calcium-alginate was used to encapsulate iron oxide nanoparticles, and as scaffold for particle nucleation and its influence on particles size and magnetic properties were studied. The iron oxide mean sizes were between 4.3 and 9.5 nm. Iron is dispersed throughout the polymer matrix mainly as iron oxide particles, and a small fraction as iron (III) occupying calcium sites in the polymer network. The temperature dependence of the Mössbauer spectra is typical of superparamagnetic particles in agreement with the magnetic susceptibility data.  相似文献   

7.
Superparamagnetic iron oxide nanoparticles have been used for many years as magnetic resonance imaging (MRI) contrast agents or in drug delivery applications. In this study, a novel approach to prepare magnetic polymeric nanoparticles with magnetic core and polymeric shell using inverse microemulsion polymerization process is reported. Poly(ethyleneglycol) (PEG)-modified superparamagnetic iron oxide nanoparticles with specific shape and size have been prepared inside the aqueous cores of AOT/n-Hexane reverse micelles and characterized by various physicochemical means such as transmission electron microscopy (TEM), infrared spectroscopy, atomic force microscopy (AFM), vibrating sample magnetometry (VSM), and ultraviolet/visible spectroscopy. The inverse microemulsion polymerization of a polymerizable derivative of PEG and a cross-linking agent resulted in a stable hydrophilic polymeric shell of the nanoparticles. The results taken together from TEM and AFM studies showed that the particles are spherical in shape with core-shell structure. The average size of the PEG-modified nanoparticles was found to be around 40-50 nm with narrow size distribution. The magnetic measurement studies revealed the superparamagnetic behavior of the nanoparticles with saturation magnetization values between 45-50 electromagnetic units per gram. The cytotoxicity profile of the nanoparticles on human dermal fibroblasts as measured by standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the particles are nontoxic and may be useful for various in vivo and in vitro biomedical applications.  相似文献   

8.
Iron oxide nanoparticles were synthesized by co-precipitation in air atmosphere at different temperatures and their structural and magnetic properties were investigated. The mean particle sizes of iron oxide nanoparticles were calculated from the X-ray diffraction (XRD) patterns using the Scherrer equation. Fourier transform infrared spectroscopy analysis exhibited the vibration bands at 563 cm?1 and 620 cm?1 confirming the formation of Fe3O4 and ??-Fe2O3, respectively. Morphological observation was made by a transmission electron microscope and the particle size of iron oxide nanoparticles was found to be around 9 nm which is consistent with the particle size calculated according to the XRD patterns. It was observed that the intensity of the peaks in the patterns and crystallinity increased as the temperature increased. Magnetization curves showed zero coercivities indicating that the samples are superparamagnetic.  相似文献   

9.
建立了将五羰基铁超声雾化、分段加热分解-氧化及产物收集-修饰一体化的氧化铁纳米粒子合成装置,研究了不同温度参数对纳米粒子的相组成和形貌的影响,并通过在雾化液及收集液中添加修饰剂以控制合成纳米粒子的粒径和分散性。采用XRD、TEM和SQUID对合成的纳米粒子进行了表征。成功合成了不同结晶性和分散性的球形γ-Fe2O3纳米粒子。随着粒径减小,合成纳米粒子由顺磁性过渡到超顺磁性。  相似文献   

10.
Kim BS  Qiu JM  Wang JP  Taton TA 《Nano letters》2005,5(10):1987-1991
We report the synthesis, characterization, and covalent surface chemistry of "magnetomicelles", cross-linked, amphiphilic block-copolymer micelles that encapsulate superparamagnetic iron oxide nanoparticles. Because these composite nanostructures assemble spontaneously from solution by simultaneous desolvation of nanoparticle and amphiphilic poly(styrene(250)-block-acrylic acid(13)) components, explicit surface functionalization of the particles is not required, and the encapsulation method was applied to different magnetic nanoparticle sizes and compositions. TEM images of the magnetomicelles illustrated that the number of encapsulated particles could be dictated rationally by synthetic conditions. The magnetic properties of the particles were characterized by SQUID magnetometry and followed the general Langevin magnetic model for superparamagnetic materials. The micellar shells of these particles were functionalized using covalent chemistry that would not ordinarily be possible on the magnetic particle surface. As a result, this noncovalent approach provides a new route to technological applications of hydrophobic magnetic nanomaterials that lack appropriate conjugate surface chemistry.  相似文献   

11.
In this study production of fine particle Fe2O3 via microwave processing of Fe(NO3)3.nH2O followed by low temperature annealing was reported. XRD was used to characterize the structural properties of nanoparticles. Approximate particle sizes were between 3-13 nm according to Scherrer's equation. Single point BET measurement results also show that samples have large surface area and they are nanometer sized particles. TEM study was conducted to examine the structure of the nanoparticles. TEM figure is in good agreement with the results obtained from Scherrer's equation using XRD spectra. In order to characterize the magnetic properties of the nanoparticles VSM (Vibrating Sample Magnetometer) was used. From these results it can be concluded that the sample containing only maghemite phase exhibits superparamagnetic behaviour, on the other hand sample containing both hematite and maghemite phases shows paramagnetic behaviour above 300 K, superparamagnetic behavior at lower temperatures.  相似文献   

12.
The concept of drug delivery using magnetic nanoparticles greatly benefit from the fact that nanotechnology has developed to a stage that it makes possible not only to produce magnetic nanoparticles in a very narrow size distribution range with superparamagnetic properties but also to engineer particle surfaces to provide site specific delivery of drugs. The size and surface characteristics of the nanoparticles are crucial factors that determine the success of the particles when used in vivo. The aim of this study was to modify the surfaces of the magnetic nanoparticles with PEG to improve the biocompatibility of the nanoparticles by resisting protein adsorption and increasing their intracellular uptake. In this study, the poly(ethyleneglycol) (PEG) modified superparamagnetic iron oxide nanoparticles have been prepared and their influence on human dermal fibroblasts is assessed in terms of cell adhesion/viability, morphology, particle uptake and cytoskeletal organisation studies. Various techniques have been used to determine nanoparticle-cell interactions including light, fluorescence, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modification of nanoparticle surface induced alterations in cell behaviour distinct from the unmodified particles, suggesting that cell response can be directed via specifically engineered particle surfaces.  相似文献   

13.
Soluble starch-functionalized multiwall carbon nanotube composites (MWCNT-starch) were prepared to improve the hydrophilicity and biocompatibility of MWCNTs. Characterization of the MWCNT-starch by Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM) and thermogravimetric analysis (TG), showed that the starch component (about 14.3 wt%) was covalently grafted onto the surface of MWCNT. MWCNT-starch-iron oxide composites, intended for use as adsorbents for the removal of dyes from aqueous solutions, were prepared by synthesizing iron oxide nanoparticles at the surface of MWCNT-starch. Starch acts as a template for growth of iron oxide nanoparticles which are uniformly dispersed on the surface of the MWCNT-starch. MWCNT-starch-iron oxide exhibits superparamagnetic properties with a saturation magnetization (23.15 emu/g) and better adsorption for anionic methyl orange (MO) and cationic methylene blue (MB) dyes than MWCNT-iron oxide.  相似文献   

14.
The objective of the study was to investigate the effect of different amounts of iron oleate precursor with different oleic acid amounts on the properties of the synthesised nanoparticles by thermal decomposition. The iron oleate precursors which formed from oleic acids in the order of 0.5, 1.0, 1.5 and 2.0 g, and 0.1 g iron powder was prepared under 200 °C seperately, using a facile solvothermal method under study. Thermal analysis of iron oleat precursors by a thermogravimetric analysis (TGA) revealed that the different amount of oleic acid was seen to have an impact on the thermal properties of iron oleat complexes. During the synthesis of nanoparticles, iron oleate complex in 1-hexadecane kept refluxing for 3 h under air atmosphere resulting in the formation of nanoparticles. The fourier transform infrared spectra measurements and the TGA analysis disclosed that nanoparticles were coated with oleic acid. To the X-ray diffraction patterns, all samples are iron oxide nanocrystals and their crystal sizes increased from 6.4 to 9.8 nm with decreasing oleic acid. Also, the sizes of nanoparticles were found to be in same range as confirmed with the surface observation by a transmission electron microscope. The magnetic properties obtained from a vibrating sample magnetometer revealed that all nanoparticles are superparamagnetic at room temperature. Also, their saturation magnetizations were up to 33.2 emu/g. It is seen that the nanoparticles are superparamagnetic with the desired structural and corresponding magnetic properties and therefore, they could be thought to be convenient for biomedical applications as the particles can be transferred to aqueous phase.  相似文献   

15.
超顺磁单分散性Fe3O4磁纳米粒的制备及性能表征   总被引:1,自引:0,他引:1  
具有超顺磁单分散性的Fe3O4磁纳米粒在生物医学材料领域有着广泛的用途. 本研究在水、乙醇和甲苯混合体系74℃回流的条件下制备了具有超顺磁性的表面含油酸的Fe3O4磁纳米粒,研究了制备过程中OH-浓度的变化对磁纳米粒的表面性能、粒径、分散性及磁性能的影响, 并对其机理进行了初步探讨. 采用XRD、FTIR、DLS、TEM和VSM等手段对制备的磁纳米粒进行表征. 结果表明, 当NaOH/Fe(Ⅱ)摩尔比<8时, Fe3O4磁纳米粒表面含油酸可良好地分散于非极性溶剂中, NaOH的加入对磁纳米粒的粒径和饱和磁化强度等性能无明显影响;而当NaOH/Fe(Ⅱ)摩尔比≥8时, Fe3O4磁纳米粒仅能分散于水等极性溶剂中, 饱和磁化强度虽可增至40A·m2/kg, 但为多分散且易团聚.  相似文献   

16.
Nanocomposites of iron oxide with conducting polymer in the form of powders of varying compositions have been studied to understand the effects of particle size, cluster size and magnetic inter-particle interactions. The sizes of the nanoparticles were estimated to be ∼ 10–20 nm from the X-ray diffraction (XRD) and the transmission electron micrographs (TEM). XRD shows a single crystalline phase for the γ-Fe2O3. The presence of conducting polymer was confirmed through Fourier transform infrared (FTIR) spectroscopy. The amount of polymer present in the composite, the transition temperature of iron oxide and the thermal stability of polymer was determined through thermogravimetric and differential thermal analysis (TGA-DTA). The room temperature magnetic hysteresis measurements show reduction in saturation magnetization with increasing polymer concentrations. A low value of coercivity was observed for low polymer composites. On increasing the polymer concentration, the coercivity and remanence become negligible indicating a superparamagnetic phase at room temperature. Beyond a certain composition, the system shows paramagnetic behaviour which is also confirmed through zero field cooled-field cooled (ZFC-FC) measurements. We also report preliminary results on the magnetic properties of self standing sheets prepared using γ-Fe2O3 and NiFe2O4 nanoparticles and conducting polymers.  相似文献   

17.
In this study, we prepared magnetic iron oxide and gold/iron oxide nanoparticles (NPs) and characterized their morphologies and properties by XRD, TEM, EDX, VSM and UV-vis measurements. The magnetite iron oxide NPs of 10 nm were synthesized by coprecipitation of Fe2+ and Fe+3 in the solution of NH4OH and then they were used as seed particles for the subsequent growth to prepare the magnetite NPs of different particle sizes and also to prepare gold/iron oxide composite NPs. All those magnetite NPs are superparamagnetic and the gold/iron oxide composite NPs combine the optical and magnetic properties, which are contributed by gold and iron oxide components, respectively.  相似文献   

18.
Iron oxide nanoparticles were stabilized within the pores of mesoporous silica MCM-41 amino-functionalized by a sonochemical method. Formation of iron oxide nanoparticles inside the mesoporous channels of amino-functionalized MCM-41 was realized by wet impregnation using iron nitrate, followed by calcinations at 550 °C in air. The effect of functionalization level on structural and magnetic properties of obtained nanocomposites was studied. The resulting materials were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM and SAED), vibrating sample and superconducting quantum interface magnetometers (VSM and SQUID) and nitrogen adsorption–desorption isotherms measurements. The HRTEM images reveal that the most of the iron oxide nanoparticles were dispersed inside the mesopores of silica matrix and the pore diameter of the amino-functionalized MCM-41 matrix dictates the particle size of iron oxide nanoparticles. The obtained material possesses mesoporous structure and interesting magnetic properties. Saturation magnetization value of magnetic iron oxide nanopatricles stabilized in MCM-41 amino-functionalized by in situ sonochemical synthesis was 1.84 emu g−1. An important finding is that obtained magnetic nanocomposite materials exhibit enhanced magnetic properties than those of iron oxide/MCM-41 nanocomposite obtained by conventional method. The described method is providing a rather short preparation time and a narrow size distribution of iron oxide nanoparticles.  相似文献   

19.
The effect of synthesis parameters on the production of superparamagnetic latex, which are magnetite nanoparticles covered with a poly(methyl methacrylate) layer, were studied. The synthesis method was based on the developed route of emulsifier-free emulsion polymerization. Under this study, effects of the monomer and initiator concentrations, the amount of magnetic sol, the stirring rate and the adding rate of the magnetic sol on the properties of synthesized latexes were investigated. The characterizations were performed by a high resolution transmission electron microscopy, a dynamic light scattering, a vibrating sample magnetometer and a gel permeation chromatography. The results showed that the monomer concentration was found to be the most effective parameter on latex stability. As the initiator amount and the stirring rate increased, saturation magnetization and average molecular weight decreased due to the reactions occurring between surfaces of magnetite nanoparticles and initiator fragments. On increasing amount of magnetic sol, the saturation magnetization and polymer molecular weight increased but the size of nanospheres was unchanged because of the ions in magnetic sol. It was seen that the desired size and magnetic properties of the latex could be obtained since the parameters were found to have substantial impact on their properties.  相似文献   

20.
以丙烯酸(AA)和2-甲基丙烯酰氧乙基磷酰胆碱(MPC)为单体,采用RAFT聚合合成系列共聚物(P(AA-co-MPC)),并通过化学共沉淀法制备P(AA-co-MPC)表面修饰的磁性Fe3O4纳米粒子。利用1H NMR,FTIR,GPC,TG,TEM,XRD,Zeta电位及粒度分析仪和Squid-VSM磁性测量系统等手段对共聚物和纳米粒子进行表征。结果表明:采用RAFT聚合成功合成了窄分子量分布的P(AA-co-MPC),磁性Fe3O4纳米粒子表面含有修饰基团;单体摩尔比(AA∶MPC)为1∶1时合成的共聚物修饰磁性Fe3O4纳米粒子的分散性最好,具有最小的水合粒径(36.54±4.00)nm和最窄的粒径分布,最高的Zeta电位(-30.98±1.25)mV,饱和磁化强度为65.57A·m^2·kg^-1,剩磁和矫顽力均为零,具有超顺磁性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号