首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Live imaging in cell biology requires three‐dimensional data acquisition with the best resolution and signal‐to‐noise ratio possible. Depth aberrations are a major source of image degradation in three‐dimensional microscopy, causing a significant loss of resolution and intensity deep into the sample. These aberrations occur because of the mismatch between the sample refractive index and the immersion medium index. We have built a wide‐field fluorescence microscope that incorporates a large‐throw deformable mirror to simultaneously focus and correct for depth aberration in three‐dimensional imaging. Imaging fluorescent beads in water and glycerol with an oil immersion lens we demonstrate a corrected point spread function and a 2‐fold improvement in signal intensity. We apply this new microscope to imaging biological samples, and show sharper images and improved deconvolution.  相似文献   

2.
This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z‐stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a ‘synthetic PSF’ in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub‐resolution bead suffers from low signal‐to‐noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z‐stack through a thin sample. This Z‐stack is deconvolved by an idealized point spread function derived from the same Z‐stack to yield a point spread function of high signal‐to‐noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non‐blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the ‘extracted PSF’) to a synthetic point spread function. Restoration of both high‐ and low‐contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.  相似文献   

3.
Deconvolution techniques have been widely used for restoring the 3‐D quantitative information of an unknown specimen observed using a wide‐field fluorescence microscope. Deconv , an open‐source deconvolution software package, was developed for 3‐D quantitative fluorescence microscopy imaging and was released under the GNU Public License. Deconv provides numerical routines for simulation of a 3‐D point spread function and deconvolution routines implemented three constrained iterative deconvolution algorithms: one based on a Poisson noise model and two others based on a Gaussian noise model. These algorithms are presented and evaluated using synthetic images and experimentally obtained microscope images, and the use of the library is explained. Deconv allows users to assess the utility of these deconvolution algorithms and to determine which are suited for a particular imaging application. The design of Deconv makes it easy for deconvolution capabilities to be incorporated into existing imaging applications.  相似文献   

4.
5.
The wavelength dependence of the incoherent point spread function in a wide-field microscope was investigated experimentally. Dispersion in the sample and optics can lead to significant changes in the point spread function as wavelength is varied over the range commonly used in fluorescence microscopy. For a given sample, optical conditions can generally be optimized to produce a point spread function largely free of spherical aberration at a given wavelength. Unfortunately, deviations in wavelength from this value will result in spherically aberrated point spread functions. Therefore, when multiple fluorophores are used to localize different components in the same sample, the image of the distribution of at least one of the fluorophores will be spherically aberrated. This aberration causes a loss of intensity and resolution, thereby complicating the localization and analysis of multiple components in a multi-wavelength image. We show that optimal resolution can be restored to a spherically aberrated image by constrained, iterative deconvolution, as long as the spherical aberration in the point spread function used for deconvolution matches the aberration in the image reasonably well. The success of this method is essentially independent of the initial degree of spherical aberration in the image. Deconvolution of many biological images can be achieved by collecting a small library of spherically aberrated and unaberrated point spread functions, and then choosing a point spread function appropriate for deconvolving each image. The co-localization and relative intensities of multiple components can then be accurately studied in a multi-wavelength image.  相似文献   

6.
This paper investigates a postprocessing approach to correct spatial distortion in two‐photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field‐of‐view, deep‐tissue studies of vascular structures. Based on simple geometric modelling of the object‐of‐interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to subvolumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three‐dimensional (3D) spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point‐spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field‐of‐view deep‐tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images.  相似文献   

7.
High‐resolution light microscopy of glycerol‐mounted biological specimens is performed almost exclusively with oil immersion lenses. The reason is that the index of refraction of the oil and the cover slip of ~1.51 is close to that of ~1.45 of the glycerol mountant, so that refractive index mismatch‐induced spherical aberrations are tolerable to some extent. Here we report the application of novel cover glass‐corrected glycerol immersion lenses of high numerical aperture (NA) and the avoidance of these aberrations. The new lenses feature a semi‐aperture angle of 68.5°, which is slightly larger than that of the diffraction‐limited 1.4 NA oil immersion lenses. The glycerol lenses are corrected for a quartz cover glass of 220 µm thickness and for a 80% glycerol‐water immersion solution. Featuring an aberration correction collar, the lens can adapt to glycerol concentrations ranging between 72% and 88%, to slight variations of the temperature, and to the cover glass thickness. As the refractive index mismatch‐induced aberrations are particularly important to quantitative confocal fluorescence microscopy, we investigated the axial sectioning ability and the axial chromatic aberrations in such a microscope as well as the image brightness as a function of the penetration depth. Whereas there is a significant decrease in image brightness associated with oil immersion, this decrease is absent with the glycerol immersion system. In addition, we show directly the compression of the optic axis in the case of oil immersion and its absence in the glycerol system. The unique advantages of these new lenses in high‐resolution microscopy with two coherently used opposing lenses, such as 4 Pi‐microscopy, are discussed.  相似文献   

8.
The point spread function of an objective lens of a fluorescence confocal microscope was directly measured by imaging fluorescent beads. We analysed how the measurement of the point spread function was influenced by the diameter of the fluorescent beads and how the restoration technique with a deconvolution algorithm improved the measuring performance. Numerical and experimental results are presented for a typical point spread function and a zero‐centred point spread function.  相似文献   

9.
The point spread function is widely used to characterize the three‐dimensional imaging capabilities of an optical system. Usually, attention is paid only to the intensity point spread function, whereas the phase point spread function is most often neglected because the phase information is not retrieved in noninterferometric imaging systems. However, phase point spread functions are needed to evaluate phase‐sensitive imaging systems and we believe that phase data can play an essential role in the full aberrations' characterization. In this paper, standard diffraction models have been used for the computation of the complex amplitude point spread function. In particular, the Debye vectorial model has been used to compute the amplitude point spread function of ×63/0.85 and ×100/1.3 microscope objectives, exemplifying the phase point spread function specific for each polarization component of the electromagnetic field. The effect of aberrations on the phase point spread function is then analyzed for a microscope objective used under nondesigned conditions, by developing the Gibson model ( Gibson & Lanni, 1991 ), modified to compute the three‐dimensional amplitude point spread function in amplitude and phase. The results have revealed a novel anomalous phase behaviour in the presence of spherical aberration, providing access to the quantification of the aberrations. This work mainly proposes a method to measure the complex three‐dimensional amplitude point spread function of an optical imaging system. The approach consists in measuring and interpreting the amplitude point spread function by evaluating in amplitude and phase the image of a single emitting point, a 60‐nm‐diameter tip of a Near Field Scanning Optical Microscopy fibre, with an original digital holographic experimental setup. A single hologram gives access to the transverse amplitude point spread function. The three‐dimensional amplitude point spread function is obtained by performing an axial scan of the Near Field Scanning Optical Microscopy fibre. The phase measurements accuracy is equivalent to λ/60 when the measurement is performed in air. The method capability is demonstrated on an Achroplan ×20 microscope objective with 0.4 numerical aperture. A more complete study on a ×100 microscope objective with 1.3 numerical aperture is also presented, in which measurements performed with our setup are compared with the prediction of an analytical aberrations model.  相似文献   

10.
Extracting quantitative data from microscopic volume images is straightforward when the refractive indices of the immersion medium and the mounting medium are equal. The readings of the position of the specimen stage can be directly used to measure depth and width. Imperfectly matched immersion and mounting media result in axial geometrical distortion. Linear correction of the axial distortion using the paraxial estimate of the axial scaling factor yields results that may differ as much as 4% from the actual values. From calculations based on a theoretical expression of the 3‐D point‐spread function in the focal region of a high‐aperture microscope focussing into a mismatched mounting medium, we derived axial scaling factors that result in quantitative results accurate to better than 1%. From a non‐linear correction procedure, an improved formula for the paraxial estimate of the axial scaling factor is derived.  相似文献   

11.
Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function (PSF) and by a refractive‐index mismatch between the sample and immersion liquid, which are difficult to separate. Additionally, accurate calibration of the axial distances in confocal microscopy remains cumbersome, although several high‐end methods exist. In this paper we present two methods to calibrate axial distances in 3D confocal microscopy that are both accurate and easily implemented. With these methods, we measured axial scaling factors as a function of refractive‐index mismatch for high‐aperture confocal microscopy imaging. We found that our scaling factors are almost completely linearly dependent on refractive index and that they were in good agreement with theoretical predictions that take the full vectorial properties of light into account. There was however a strong deviation with the theoretical predictions using (high‐angle) geometrical optics, which predict much lower scaling factors. As an illustration, we measured the PSF of a correctly calibrated point‐scanning confocal microscope and showed that a nearly index‐matched, micron‐sized spherical object is still significantly elongated due to this PSF, which signifies that care has to be taken when determining axial calibration or axial scaling using such particles.  相似文献   

12.
In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three‐dimensional optical transfer functions also allow an assessment of the performance of a system for focal‐series experiments or optical sectioning applications.  相似文献   

13.
Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z‐stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal‐to‐background ratio and image contrast. Here, we present comparative studies on a variety of biological samples.  相似文献   

14.
A programmable array microscope (PAM) incorporates a spatial light modulator (SLM) placed in the primary image plane of a widefield microscope, where it is used to define patterns of illumination and/or detection. We describe the characteristics of a special type of PAM collecting two images simultaneously. The conjugate image (Ic) is formed by light originating from the object plane and returning along the optical path of the illumination light. The non‐conjugate image (Inc) receives light from only those regions of the SLM that are not used for illuminating the sample. The dual‐signal PAM provides much more time‐efficient excitation than the confocal laser scanning microscope (CLSM) and greater utilization of the available emission light. It has superior noise characteristics in comparison to single‐sided instruments. The axial responses of the system under a variety of conditions were measured and the behaviour of the novel Inc image characterized. As in systems in which only Ic images are collected (Nipkow‐disc microscopes, and previously characterized PAMs), the axial response to thin fluorescent films showed a sharpening of the axial response as the unit cell of the repetitive patterns decreased in size. The dual‐signal PAM can be adapted to a wide range of data analysis and collection strategies. We investigated systematically the effects of patterns and unit cell dimensions on the axial response. Sufficiently sparse patterns lead to an Ic image formed by the superposition of the many parallel beams, each of which is equivalent to the single scanning spot of a CLSM. The sectioning capabilities of the system, as given by its axial responses, were similar for a given scan pattern and for processed pseudorandom sequence (PRS) scans with the same size of the unit cell. For the PRS scans, optical sectioning was achieved by a subtraction of an Inc image or, alternatively, a scaled widefield image from the Ic image. Based on the comparative noise levels of the two methods, the non‐conjugate subtraction was significantly superior. A point spread function for Ic and Inc was simulated and properties of the optical transfer functions (OTFs) were compared. Simulations of the OTF in non‐conjugate imaging did not suffer from the missing cone problem, enabling a high quality deconvolution of the non‐conjugate side alone. We also investigated the properties of images obtained by subjecting the Ic and Inc data to a combined maximum likelihood deconvolution.  相似文献   

15.
The fluorescence intensity image of an axially integrated through-focus series of a thin standardized uniform fluorescent layer can be used for image intensity correction and calibration in sectioning microscopy. This intensity image is in fact available from the earlier introduced Sectioned Imaging Property (SIP) charts ( Brakenhoff et al. , 2005 ). It is shown that the integrated intensity of a z -stack from a biological sample, imaged under identical conditions as the layer, can be calibrated in terms of fluorescence layer units of the calibration layer. The imaging after such calibration becomes, as a first approximation, independent of the microscope system and imaging conditions. This is demonstrated on axially integrated images of standard fluorescent beads and standard BPAE Fluorocells. Corrections on the microscope imaging conditions include shading effects, imaging with different magnifications and objectives, and using different microscope systems. It is also shown that with the present approach the actual underlying three-dimensional (3D) fluorescence data set itself can be corrected for variations in point spread function (PSF) imaging efficiency over the imaging data cube. Realizing such calibration between imaging conditions or systems requires basically only the 2D fluorescer molecule density of the reference layers and the section distances with which the layer data are collected.  相似文献   

16.
A whole-field time-domain fluorescence lifetime imaging (FLIM) microscope with the capability to perform optical sectioning is described. The excitation source is a mode-locked Ti:Sapphire laser that is regeneratively amplified and frequency doubled to 415 nm. Time-gated fluorescence intensity images at increasing delays after excitation are acquired using a gated microchannel plate image intensifier combined with an intensified CCD camera. By fitting a single or multiple exponential decay to each pixel in the field of view of the time-gated images, 2-D FLIM maps are obtained for each component of the fluorescence lifetime. This FLIM instrument was demonstrated to exhibit a temporal discrimination of better than 10 ps. It has been applied to chemically specific imaging, quantitative imaging of concentration ratios of mixed fluorophores and quantitative imaging of perturbations to fluorophore environment. Initially, standard fluorescent dyes were studied and then this FLIM microscope was applied to the imaging of biological tissue, successfully contrasting different tissues and different states of tissue using autofluorescence. To demonstrate the potential for real-world applications, the FLIM microscope has been configured using potentially compact, portable and low cost all-solid-state diode-pumped laser technology. Whole-field FLIM with optical sectioning (3D FLIM) has been realized using a structured illumination technique.  相似文献   

17.
Einspahr JJ  Voyles PM 《Ultramicroscopy》2006,106(11-12):1041-1052
Confocal STEM is a new electron microscopy imaging mode. In a microscope with spherical aberration-corrected electron optics, it can produce three-dimensional (3D) images by optical sectioning. We have adapted the linear imaging theory of light confocal microscopy to confocal STEM and use it to suggest optimum imaging conditions for a confocal STEM limited by fifth-order spherical aberration. We predict that current or near-future microscopes will be able to produce 3D images with 1 nm vertical resolution and sub-Angstrom lateral resolution. Multislice simulations show that we will need to be cautious in interpreting these images, however, as they can be complicated by dynamical electron scattering.  相似文献   

18.
Capillary‐based high‐pressure chambers for which the wall serves as both the optical window and mechanical support have been reported for fluorescence microscopy imaging. Although capillary chambers are straightforward and economical to construct, the curved capillary wall introduces image aberrations. The significance of these aberrations in imaging sub‐cellular‐dimension objects has yet to be assessed. Using a capillary chamber that is routinely pressurized to between 20 and 30 MPa, a pressure range suitable for studying a wide variety of cellular processes, we demonstrate sub‐cellular‐dimension spatial resolution in the imaging of fluorescent micro‐spheres. Objectives with a range of numerical apertures (0.5–1.3) and working distances (0.1–7.4 mm) are considered. We show that spatial (or point‐spread function, PSF) deconvolution improves image contrast in capillary‐based images by comparing deconvolution results with those obtained from slide‐mounted controls. Furthermore, similar deconvolution results between a measured PSF and a calculated, flat‐geometry PSF indicate that the capillary wall is optically flat on cellular length scales. Results here facilitate the application of contemporary techniques in fluorescence microscopy to high‐pressure imaging fields.  相似文献   

19.
Accurate characterization of capillary geometry is of the utmost importance for physiological tissue studies such as oxygen transport. We show that 3D microscopy can be used to measure tissue capillary geometry both in normal and disease states. We imaged fluorescently labeled gut mucosa capillary beds of three control rats and three rats 4 hours after i.p. injection of 9 mg/kg endotoxin. We used serial optical sectioning microscopy coupled with deconvolution to reconstruct 3D capillary geometry. Theoretical point spread functions accounting for depth into the specimen resulted in better reconstructions than experimentally measured point spread functions. We next derived the distribution of the shortest distances to the nearest capillary from all extravascular tissue voxels. In normal rats the shortest-distance distributions were remarkably constant despite widely varying capillary geometry. Furthermore, the mean of the shortest-distance distributions increased significantly for endotoxemic rats (4.8+/-0.4 microm) compared to controls (4.3+/-0.3 microm, P<0.05). Hence, serial sectioning microscopy provides an accurate venue for measuring physiologically relevant 3D capillary structure.  相似文献   

20.
We present a beam-shaping technique for two-photon excitation (TPE) fluorescence microscopy. We show that by inserting a properly designed three-ring pupil filter in the illumination beam of the microscope, the effective optical sectioning capacity of such a system improves so that the point spread function gets a quasi-spherical shape. Such an improvement, which allows the acquisition of 3D images with isotropic quality, is obtained at the expense of only a small increase of the overall energy in the axial sidelobes. The performance of this technique is illustrated with a scanning TPE microscopy experiment in which the image of small beads is obtained. We demonstrate an effective narrowing of 12.5% in the axial extent of the point spread function, while keeping the 82% of the spot-fluorescence efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号