首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Estimates were made of the biomass and production of heterotrophic bacteria in the epilimnion of Lake Mendota, Wis. Cell counts were done with epifluorescence microscopy and varied from 3 × 105 bacteria per ml in winter to 3 × 106 bacteria per ml in summer. Cell volumes were measured in scanning electron micrographs. The average cell volume was 0.159 μm3. Annual variations and depth distribution were studied. Production was estimated from the frequency of dividing cells and from dark radioactive sulfate uptake. Annual productivity and daily average productivity were very close with both methods: 107 to 205 g of C per m2 per year for sulfate and 89 to 117 g of C per m2 per year for frequency of dividing cells. Zooplankton feeding removed 2 to 10% of the bacterial net production annually. When compared with biomass changes and losses due to zooplankton feeding, production values were very high. Therefore, it was suggested that other loss factors have to be more important than zooplankton feeding in controlling the bacterial population. Bacterial heterotrophic production was about 50% of gross primary production.  相似文献   

2.
Phyto- and bacterioplankton biomass and activity were simultaneously measured during the course of one year in the shallow Créteil Lake (France).Phytoplankton was dominated, during the whole year, by small-sized organisms (10 to 25 µm). Bacteria were in a majority small coccoids (<0.3 µm). Phyto -and bacterioplankton abundances averaged respectively 3.3 × 106 cells l–1 and 6 × 109 cells l–1.The phasing of the activity and biomass periods suggest a close coupling between phyto- and bacterioplankton. There were two distinct periods of high activity and biomass. Maximal values were observed in summer but an early increase occurred also in winter. Low or undetectable phytoplankton excretion rates, when heterotrophic activity was maximum, indicated a bacterial uptake of up to 100% of the released algal products during the incubation period. Heterotrophic uptake measurements with both glucose and amino acids revealed a seasonal change of the substrates in the lake, glucose uptake being associated more with the maximum activity of the algae, while the amino acids uptake was relatively higher during their decline.The maximal photosynthetic rate averaged 21.5 mgC m–3 h–1 and mean Vmax values were 0.056 and 0.050 mgC m–3 h–1 respectively for glucose and amino acids uptake.  相似文献   

3.
Carbon standing stocks and fluxes were studied in the lagoon of Tikehau atoll (Tuamotu archipelago, French Polynesia), from 1983 to 1988.The average POC concentration (0.7–2000 µm) was 203 mg C m–3. The suspended living carbon (31.6 mg C m–3) was made up of bacteria (53%), phytoplankton < 5 µm (14.2%), phytoplankton > 5 µm (14.2%), nanozooplankton 5–35 µm (5.7%), microzooplankton 35–200 µm (4.7%) and mesozooplankton 200–2000 µm (7.9%). The microphytobenthos biomass was 480 mg C m–2.Suspended detritus (84.4% of the total POC) did not originate from the reef flat but from lagoonal primary productions. Their sedimentation exceeded phytobenthos production.It was estimated that 50% of bacterial biomass was adsorbed on particles. the bacterial biomass dominance was explained by the utilisation of 1) DOC excreted by phytoplankton (44–175 mg C m–2 day –1) and zooplankton (50 mg Cm–2 day–1)2) organic compounds produced by solar-induced photochemical reactions 3) coral mucus.50% of the phytoplankton biomass belongs to the < 5 µm fraction. This production (440 mg C m–2 day–1) exceeded phytobenthos production (250 mg C m–2 day–1) when the whole lagoon was considered.The zooplankton > 35 µm ingested 315 mg C m–2 day–1, made up of phytoplankton, nanozooplankton and detritus. Its production was 132 mg C m–2 day–1.  相似文献   

4.
Rivers and estuaries transport organic carbon (C) from terrestrial and freshwater ecosystems to the marine environment. During this transit, bacteria actively utilize and transform organic C, but few studies have measured detailed spatial variation in rates of bacterial respiration (BR) and production (BP). We measured BP at 39 stations and BR at 12 stations at monthly intervals along a 200-km reach of the tidal Hudson River. We observed strong repeatable spatial patterns for both BP and BR, with rates declining in the downstream direction. Bacterial Production had much greater dynamic range of spatial variation than BR. We used the detailed seasonal and spatial data on BP and BR to measure the total C demand of bacteria at several scales. We calculated volumetric and areal rates for 12 sections of the Hudson, as well as the total C utilization. Volumetric BR averaged 20 g-C-m–3 y–1, but it was highest in the most upstream section at 30 g C m–3 y–1. Areal rates averaged over the entire river were 174 g C m–2 y–1, but they were 318 g C m–2 y–1 in the deepest section of the river, indicating the importance of morphometric variation. Total bacterial C demand increased downriver with increasing total volume. Overall, bacteria in the freshwater section of the river consumed approximately 18–25.5 × 109 g C y–1, about 20% of the total organic C load.  相似文献   

5.
Total bacterial numbers in different strata of lake water and in inlet and outlet streams have been recorded during a yearly cycle. A calculated mean cell volume of 0.342 µm2 has then been used to estimate bacterial biomass in the lake. Change of biomass during the year was substantial and the range was from about 0.1 g · m–3 to about 1.0–1.2 g · m–3. The seasonal development included a spring-early summer increase followed by a decrease to the minimum in July–August. Correlation between epi- and hypolimnion was high and in both strata two dominant autumn peaks in biomass appeared. With the exception of the last autumn peak the development of bacterial biomass was closely related to development of phytoplankton biomass and production.  相似文献   

6.
Incorporation of [14C]leucine into proteins of bacteria was studied in a temperate mesohumic lake. The maximum incorporation of [14C] leucine was reached at a concentration of 30 nm determined in dilution cultures. Growth experiments were used to estimate factors for converting leucine incorporation to bacterial cell numbers or biomass. The initially high conversion factors calculated by the derivative method decreased to lower values after the bacteria started to grow. Average conversion factors were 7.09 × 1016 cells mol–1 and 7.71 × 1015 m3 mol–1, if the high initial values were excluded. Using the cumulative method, the average conversion factor was 5.38 × 1015 m–3 mol–1 I . The empirically measured factor converting bacterial biomass to carbon was 0.36 pg C m–3 or 33.1 fg C cell–1. Bacterial production was highest during the growing season, ranging between 1.8 and 13.2 g C liter–1 day–1, and lowest in winter, at 0.2–2.9 g C liter–1 day–1. Bacterial production showed clear response to changes in the phytoplankton production, which indicates that photosynthetically produced dissolved compounds were used by bacteria. In the epilimnion bacterial production was, on average, 19–33% of primary production. Assuming 50% growth efficiency for bacteria, the allochthonous organic carbon could have also been an additional energy and carbon source for bacteria, especially in autumn and winter. In winter, a strong relationship was found between temperature and bacterial production. The measuring of [14C]leucine incorporation proved to be a simple and useful method for estimating bacterial production in humic water. However, an appropriate amount of [14C]leucine has to be used to ensure the maximum uptake of label and to minimize isotope dilution.  相似文献   

7.
Biomass and activity of planktonic bacteria were investigated during a one year study in a shallow sandpit lake. The shallowness of the lake helped keep the water column homogeneous regarding bacterioplankton. Small free-living bacteria (0.03 µm3 cell–1) dominated the populations throughout the period studied. Bacterial abundances varied from 1 to 11 × 106 cells ml–1. Kinetic parameters (V max, K + S and T) were determined with 14C labelled compounds (glucose and amino acids mixture). V max values were high and averaged 0.056 and 0.050 µgCl–1 h–1 for glucose and amino acids respectively. Maximal V max values were observed in summer at the highest temperatures, but also in early spring. T values were much greater in winter. K + S values were significantly higher for amino acids (3 µg Cl–1) than for glucose (1 µg Cl–1). A low percentage of mineralization (about 25% for both tracers) could be the expression of the high growth efficiency expected when bacteria are growing at the expense of low molecular weight compounds as phytoplankton exudates.  相似文献   

8.
Bacterial productivity in ponds used for culture of penaeid prawns   总被引:6,自引:0,他引:6  
The quantitative role of bacteria in the carbon cycle of ponds used for culture of penaeid prawns has been studied. Bacterial biomass was measured using epifluorescence microscopy and muramic acid determinations. Bacterial growth rates were estimated from the rate of tritiated thymidine incorporation into DNA. In the water column, bacterial numbers ranged from 8.3×109 1–1 to 2.57×1010 1–1 and production ranged from 0.43 to 2.10 mg Cl–1 d–1. In the 0–10 mm zone in sediments, bacterial biomass was 1.4 to 5.8 g C m–2 and production was 250 to 500 mg C m–2 d–1. The results suggested that most organic matter being supplied to the ponds as feed for the prawns was actually being utilized by the bacteria. When the density of meiofauna increased after chicken manure was added, bacterial biomass decreased and growth rates increased.  相似文献   

9.
Population dynamics of bacteria in Arctic sea ice   总被引:3,自引:0,他引:3  
The dynamics of bacterial populations in annual sea ice were measured throughout the vernal bloom of ice algae near Resolute in the Canadian Arctic. The maximum concentration of bacteria was 6.0·1011 cells·m–2 (about 2.0·1010 cells·l–1) and average cell volume was 0.473 m3 in the lower 4 cm of the ice sheet. On average, 37% of the bacteria were epiphytic and were most commonly attached (70%) to the dominant alga,Nitzschia frigida (58% of total algal numbers). Bacterial population dynamics appeared exponential, and specific growth rates were higher in the early season (0.058 day–1), when algal biomass was increasing, than in the later season (0.0247 day–1), when algal biomass was declining. The proportion of epiphytes and the average number of epiphytes per alga increased significantly (P<0.05) through the course of the algal bloom. The net production of bacteria was 67.1 mgC·m–2 throughout the algal bloom period, of which 45.5 mgC·m–2 occurred during the phase of declining algal biomass. Net algal production was 1942 mgC·m–2. Sea ice bacteria (both arctic and antarctic) are more abundant than expected on the basis of relationships between bacterioplankton and chlorophyll concentrations in temperate waters, but ice bacteria biomass and net production are nonetheless small compared with the ice algal blooms that presumably support them.  相似文献   

10.
Fluorescently-labelled bacteria (FLB) were used to study the feeding strategies of a natural assemblage of estuarine protozoans and to examine whether the protozoan grazing could account for the in situ size structure of the bacterioplankton. The FLB, DTAF-stained enterococci, ranging in volume from 0.01 to 0.30 × 10–1 µm3, were added to a natural planktonic assemblage at a density of 5.5% of the natural bacterioplankton. Initial densities (individuals ml–1) were as follows: total natural bacteria, 2.2 × 106; FLB, 1.2 × 105; pigmented flagellates, 300; colorless flagellates, 250; and ciliates, 30. FLB consumption rates were determined by examining the contents of protozoan food vacuoles, and the long-term effect of grazing (over a period of 100 hours) was determined by monitoring the decline in the FLB density in experimental vessels. The average consumption rates of FLB by pigmented flagellates were similar to those by flagellates that lacked chloroplasts (0.9 and 0.6 FLB protozoan–1 hour–1, respectively). The ciliates consumed bacteria at an average rate that was 17-fold higher (per cell) than flagellates, and they displayed a greater preference for larger bacteria than did the flagellates. FLB of the mid-size classes (0.025–0.100 µm3) were heavily grazed by the entire protozoan assemblage; the smallest (<0.025 µm3) and the largest (>0.100 µm3) FLB escaped protozoan grazing. This had a profound effect on the resulting size distribution of FLB. At the end of a 100-hour incubation, the percentage of mid-size FLB (0.025 to 0.100 µm3) decreased 2.0–2.2-fold, while the percentage of the smallest and the largest FLB increased 2.0–2.5-fold. Resultant densities of FLB were consistent with initial clearance rates determined for the protozoan groups. The grazing rates of protozoans on FLB were species-specific; whereas some species consumed FLB, others did not demonstrate bacterivory. The results suggest that protozoan grazing has a major effect on the size distribution of coastal bacterioplankton. By selectively feeding on a particular size-class of bacteria, planktonic ciliates may consume 15–90% day–1 of the standing stock of largest size classes of bacterioplankton. Thus, ciliates, which were present in low abundance in the field, could not balance the production of the entire bacterial community, but they may strongly influence the portion of the bacterial community represented by the largest bacterial class. The direct effect of flagellates (e.g., grazing) was limited to smaller bacteria.Offprint requests to: M. P. Shiaris.  相似文献   

11.
The nitrifying bacteria in activated sludge and biofilms consisting of the bacteria immobilized on polypropylene packing were subjected to an electric current via two electrodes. In activated sludge, the metabolism of nitrifying bacteria was inhibited when the applied current was over 2.5 A m–2, whilst in biofilms, inhibition began when the current reached 5 A m–2. At 15 A m–2, the nitrification rate of NH4 +-N in a biofilm with a bacterial density of 1.62 g total solids, dry wt m–2 decreased to about 80% of its initial value. Ninety-two % of the initial biomass on the packing was retained after 36 h.  相似文献   

12.
Abstract The investigation of the bacterial community in the Kühw?rter Wasser, a macrophyte-dominated arm of the River Danube backwater system near Vienna, revealed that variation in microbial densities and biomass could be related to a characteristic sequence in morphotype composition over the seasons. Maximal bacterial cell numbers and biomass occured in early summer, with values of up to 9 × 109 cells l−1 and 122 μg C l−1, respectively, caused by a massive increase of vibrio-shaped cells. On the other hand, in early spring, filamentous bacteria were responsible for a marked increase in bacterial biomass, making up 40% of the total bacterial biomass. Over the year, rod-shaped cells were the dominating morphotype, while the biomass of cocci was rather negligible. In winter, cell numbers and biomass showed minimal values with 2.0 × 109 cells l−1 and 28 μg C l−1, respectively, and bacteria were considered to be substrate and temperature limited during this period. Saturation values of the incorporation of 3H-thymidine into DNA, for the estimation of bacterial secondary production, varied seasonally, ranging from 5 nm to 40 nm. Thus, saturation experiments needed to be conducted on a regular basis. Also, the amount of labeled thymidine in the DNA, as a percentage of labeled thymidine in the TCA precipitate, varied over the year. Minimum values of 45% were recorded during the cold season, while maximum values of 75–80% at the beginning of June coincided with high chlorophyll a values and minimal K m-values derived from saturation experiments. The potential role of the nitrogen-rich nucleoside thymidine as a readily utilizable substrate for bacteria during labeling experiments, under varying conditions of substrate availability, is discussed. Bacterial secondary production rates ranged from 0.3 μg C l−1 h−1 in winter to values of 10 μg C l−1 h−1 in August, where phytoplanktonic biomass reached the summer maximum, and bacterial biomass was calculated to be renewed 3 times per day. An estimation of the bacterial carbon demand showed that for the major part of the year, with the exception of early spring, the bacterioplankton community in the Kühw?rter Wasser was dependent on carbon sources other than phytoplanktonic primary production. Received: 22 March 1996; Revised: 1 August 1996  相似文献   

13.
Dynamics of bacterioplankton in a mesotrophic French reservoir (Pareloup)   总被引:1,自引:1,他引:0  
Bacterioplankton abundance, biomass and production were studied at a central station (35 m depth) from April 1987 to September 1988 in a mesotrophic reservoir. Bacterial production was calculated by the (3H) thymidine method.For the water column, integrated estimates of bacterioplankton abundance ranged from 2.3 109 to 4.6 109 cells l–1, and carbon biomass from 0.037 to 0.068 mg C l–1; the thymidine incorporation rates ranged from 0.8 to 17.2 picomoles l–1 h–1, leading to net bacterial production estimates of less than 0.7 µg C l–1 d–1 in winter to 18 µg C l–1 d–1 in summer. About 55% of the production occurred in the euphotic layers.Over the year, the bacterial carbon requirement represented 90% of the autotrophic production for the whole lake. It was five times lower than autotrophic production in spring, but twice as high in summer. This important temporal lack of balance suggests that not all the spring primary production products are consumed immediately and/or that other carbon sources probably support bacterial growth in summer.  相似文献   

14.
The turnover times of glucose, averaged for 0–10 m in the upper waters of Lake Kinneret and measured by the addition of single or multiple concentrations of substrate, ranged from 23 to 188 hours and 1 to 87 hours respectively. Potential uptake rates (estimated as Vmax) ranged from 0.095 to 1.94 µg glucose l–1h–1, while measured uptake rates varied from 0.09 to 1.1 µg glucose l–1h–1. Concentrations of dissolved carbohydrates and glucose averaged 0.71 mg glucose equivalents l–1 and 39 µg glucose l–1 respectively. No evident relationships between glucose cycling and any fractions of dissolved organic matter, phytoplankton biomass or primary productivity were found. Turnover times were generally most rapid immediately after the decline of the spring Peridinium bloom. The respiration percentage of incorporated glucose ranged from 25% to 61% with highest values during the summer months. Respiration may be influenced by the nature of the indigenous bacterial population as well as by temperature. Daily heterotrophic glucose carbon uptake was about 9% of the photosynthetic incorporation and could provide a bacterial yield of about 7 × 104 ml–1d–1.  相似文献   

15.
Production and decomposition processes in a saline meromictic lake   总被引:1,自引:1,他引:0  
Bacterial and phytoplankton cell number and productivity were measured in the mixolimnion and chemocline of saline meromictic Mahoney Lake during the spring (Apr.–May) and fall (Oct.) between 1982 and 1987. High levels of bacterial productivity (methyl 3H-thymidine incorporation), cell numbers, and heterotrophic assimilation of 14C-glucose and 14C-acetate in the mixolimnion shifted from near surface (1.5 m), at a secondary chemocline, to deeper water (4–7 m) as this zone of microstratification gradually weakened during a several year drying trend in the watershed. In the mixolimnion, bacterial carbon (13–261 µgC 1–1) was often similar to phytoplankton carbon (44–300 µgC 1–1) and represented between 14–57% of the total microbial (phytoplankton + bacteria) carbon depending on the depth interval. Phototrophic purple sulphur bacteria were stratified at the permanent primary chemocline (7.5–8.3 m) in a dense layer (POC 250 mg 1–1, bacteriochlorophyll a 1500–70001µ 1–1), where H2S changed from 0.1 to 2.5 mM over a 0.2 m depth interval. This phototrophic bacterial layer contributed between 17–66% of the total primary production (115–476 mgC m–2 d–1) in the vertical water column. Microorganisms in the phototrophic bacterial layer showed a higher uptake rate for acetate (0.5–3.7 µC 1–1 h–1) than for glucose (0.3–1.4 µgC 1–1 h–1) and this heterotrophic activity as well as bacterial productivity were 1 to 2 orders of magnitude higher in the dense plate than in the mixolimnetic waters above. Primary phytoplanktonic production in the mixolimnion was limited by phosphorus while light penetration appeared to regulate phototrophic productivity of the purple sulphur bacteria.  相似文献   

16.
Metabolic activity of bacteria was investigated in open water, newly forming sea ice, and successive stages of pack ice in the Weddell Sea. Microautoradiography, using [3H]leucine as substrate, was compared with incorporation rates of [3H]leucine into proteins. Relation of [3H]leucine incorporation to the biomass of active bacteria provides information about changes of specific metabolic activity of cells. During a phytoplankton bloom in an ice-free, stratified water column, total numbers of bacteria in the euphotic zone averaged 2.3 × 105 ml–1, but only about 13% showed activity via leucine uptake. Growth rate of the active bacteria was estimated as 0.3–0.4 days–1. Total cell concentration of bacteria in 400 m depth was 6.6 × 104 ml–1. Nearly 50% of these cells were active, although biomass production and specific growth rate were only about one-tenth that of the surface populations. When sea ice was forming in high concentrations of phytoplankton, bacterial biomass in the newly formed ice was 49.1 ng C ml–1, exceeding that in open water by about one order of magnitude. Attachment of large bacteria to algal cells seems to cause their enrichment in the new ice, since specific bacterial activity was reduced during ice formation, and enrichment of bacteria was not observed when ice formed at low algal concentration. During growth of pack ice, biomass of bacteria increased within the brine channel system. Specific activity was still reduced at these later stages of ice development, and percentages of active cells were as low as 3–5%. In old, thick pack ice, bacterial activity was high and about 30% of cells were active. However, biomass-specific activity of bacteria remained significantly lower than that in open water. It is concluded that bacterial assemblages different to those of open water developed within the ice and were dominated by bacteria with lower average metabolic activity than those of ice-free water.  相似文献   

17.
Rates of oxygenic and anoxygenic photosynthesis, chemoautotrophic and heterotrophic bacterial production and protozoan bacterivory were measured in the pelagic zone of the stratified brackish-water lake with the purpose to determine the vertical distribution of these processes and to estimate their significance in the functioning of planktonic community of the lake. In midsummer, total daily primary productivity was about 1.3 g C m–2, of which 72% was produced by the phytoplankton, 24% by the chemoautotrophic bacteria, and only 4% by the phototrophic sulphur bacteria. Thus anoxygenic photosynthesis is a negligible source of organic matter in the lake. The production of heterotrophic bacteria averaged 1.5 g C m–2 d–1 and exceeded the total photosynthesis of phytoplankton and photosynthetic bacteria by a factor of 1.5. The estimated total primary production was too low to sustain the bacterial production. Probably the carbon cycle in the lake is dependent on the input of allochthonous organic matter. As a rule, the maximal rates of primary production and heterotrophic bacterial production were found in the chemocline or at the upper boundary of the chemocline. Heterotrophic flagellates dominated among the protozoan populations and were the major consumers of the bacterioplankton production in the lake. They showed maximal ingestion rates from 2.3 to 2.9 mg C m–3 h–1 at the upper boundary of the chemocline, where they consumed from 50 to 54% of the production of heterotrophic bacteria. Data obtained indicate that in Lake Shira the oxic-anoxic interface is the site of the most intensive production and mineralization of organic matter.  相似文献   

18.
Flindt  Mogens R.  Nielsen  Jan B. 《Hydrobiologia》1992,235(1):283-293
Total oxygen uptake, bacterial oxygen uptake, total bacterial biomass and active bacterial biomass were determined at the sediment-water interface at two stations in the brackish Roskilde Fjord between September and December in 1986 before, during and after sedimentation of a phytoplankton bloom. Bacterial oxygen consumption was separated from total oxygen consumption by addition of cycloheximide. The fractional and the absolute bacterial oxygen uptake were greatest at the most eutrophic station, where total oxygen uptake was 870–1740 mg O2 m–2 d–1 and the bacterial oxygen uptake was 232–870 mg O2 m–2 d–1. At the less eutrophic station, total oxygen uptake was 725–1740 mg O2 m–2 d–1. and bacterial oxygen uptake was 200–550 mg O2 m–2 d–1.Active bacterial biomass was separated from total bacterial biomass by addition of the terminal electron acceptor INT-formazan. The active bacterial biomass was 70–120 µg C mg–1 ww of sediment at the most eutrophic station and 50–90 µg C g–1 ww of sediment at the other station. Differences in capacity of bacterial oxygen uptake between the two stations correlated to the active bacterial biomass. The non-temperature dependent bacterial oxygen uptake correlated with the sedimentation rate.  相似文献   

19.
Direct observation was used to measure feeding rates of the flagellate Spumella on three sizes of bacteria plus 0.3 µm latex beads using video microscopy. Feeding rate was maximum on the intermediate-sized bacteria. Maximum ingestion rates (Im) for the large- (0.53 µm3), intermediate- (0.08 µm3) and small-sized (0.02 µm3) bacteria and 0.014 µm3 latex beads were 11, 38 and 14 bacteria and 9 beads flagellate–1 h–1, respectively. The growth rates of Spumella sp. feeding on monoxenic cultures of the large- vs. the intermediate-sized bacteria were indistinguishable but Spumella sp. could not sustain its population density when feeding on the small bacterium as the sole food source. Our data are consistent with the hypothesis that Spumella sp., and possibly other flagellate protozoa, tend to feed selectively on larger prey. One consequence of this hypothesis is that differential grazing by bactivores may select for small bacteria in natural waters.  相似文献   

20.
The depth-dependent, seasonal, and diel variability of virus numbers, dissolved DNA (D-DNA), and other microbial parameters was investigated in the northern Adriatic Sea. During periods of water stratification, we found higher virus abundances and virus/bacterium ratios (VBRs) as well as a larger variability of D-DNA concentrations at the thermocline, probably as a result of higher microbial biomass. At the two investigated stations, virus densities were highest in summer and autumn (up to 9.5 × 1010 1–1) and lowest in winter (< 109 1–1); D-DNA concentrations were highest in summer and lowest in winter. The VBR as well as an estimated proportion of viral DNA on total D-DNA showed a strong seasonal variability. VBR averaged 15.0 (range, 0.9–89.1), and the percentage of viral DNA in total D-DNA averaged 18.3% (range, 0.1–96.1%). An estimation of the percentage of bacteria lysed by viruses, based on 2-h sample intervals in situ, ranged from 39.6 to 212.2% d–1 in 5 m and from 19.9 to 157.2% d–1 in 22 m. The estimated contribution of virus-mediated bacterial DNA release to the D-DNA pool ranged from 32.9 to 161% d–1 in 5 m and from 10.3 to 74.2% d–1 in 22 m. Multiple regression analysis and the diel dynamics of microbial parameters indicate that viral lysis occasionally could be more important in regulating bacterial abundances than grazing by heterotrophic nanoflagellates. Correspondence to: M.G. Weinbauer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号