首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A novel time‐varying adaptive controller at the torque level is proposed to simultaneously solve the stabilization and the tracking problem of unicycle mobile robots with unknown dynamic parameters. The idea underlying the controller is intuitively simple: rather than switching between two different types of controllers according to the a priori knowledge of the reference velocities being persistently exciting or not, a new time‐varying signal is introduced to make the single controller capable of adaptively, smoothly, and gradually converting between stabilizer and tracker depending on the instantaneous and past information of the reference velocities. Our control development is based on Lyapunov's direct method and the backstepping technique. Adaptive control techniques are used to deal with parametric uncertainties. The outstanding feature of our controller is computationally simple due to its full use of the existing results on stabilization and tracking control for unicycle robots. With our approach, robots can globally follow a large class of paths including a straight line, a circle, a path approaching a set‐point, or just a set‐point using a single controller. Simulation results for a unicycle‐type mobile robot are provided to illustrate the effectiveness of the proposed controller.  相似文献   

2.
This paper proposes an adaptive critic tracking control design for a class of nonlinear systems using fuzzy basis function networks (FBFNs). The key component of the adaptive critic controller is the FBFN, which implements an associative learning network (ALN) to approximate unknown nonlinear system functions, and an adaptive critic network (ACN) to generate the internal reinforcement learning signal to tune the ALN. Another important component, the reinforcement learning signal generator, requires the solution of a linear matrix inequality (LMI), which should also be satisfied to ensure stability. Furthermore, the robust control technique can easily reject the effects of the approximation errors of the FBFN and external disturbances. Unlike traditional adaptive critic controllers that learn from trial-and-error interactions, the proposed on-line tuning algorithm for ALN and ACN is derived from Lyapunov theory, thereby significantly shortening the learning time. Simulation results of a cart-pole system demonstrate the effectiveness of the proposed FBFN-based adaptive critic controller.  相似文献   

3.
蔡建羡  阮晓钢 《机器人》2010,32(6):732-740
针对两轮直立式机器人的运动平衡控制问题,结合OCPA 仿生学习系统,基于模糊基函数,设计了一 种鲁棒仿生学习控制方案.它不需要动力学系统的先验知识,也不需要离线的学习阶段.鲁棒仿生学习控制器主要 包括仿生学习单元、增益控制单元和鲁棒自适应单元3 部分.仿生学习单元由模糊基函数网络(FBFN)实现,FBFN 不仅执行操作行为产生功能,逼近动力学系统的非线性部分,同时也执行操作行为评价功能,并利用性能测量机制 提供的误差测量信号,产生取向值信息,对操作行为产生网络进行调整.增益控制单元的作用是确保系统的稳定性 和性能,鲁棒自适应单元的作用是消除FBFN 的逼近误差及外部干扰.此外,由于FBFN 的参数是基于李亚普诺夫 稳定性理论在线调整的,因此进一步确保了系统的稳定性和学习的快速性.理论上证明了鲁棒仿生学习控制器的稳 定性,仿真实验结果验证了其可行性和有效性.  相似文献   

4.
On the basis of the kinematic model of a unicycle mobile robot in polar coordinates, an adaptive visual servoing strategy is proposed to regulate the mobile robot to its desired pose. By regarding the unknown depth as model uncertainty, the system error vector can be chosen as measurable signals that are reconstructed by a motion estimation technique. Then, an adaptive controller is carefully designed along with a parameter updating mechanism to compensate for the unknown depth information online. On the basis of Lyapunov techniques and LaSalle's invariance principle, rigorous stability analysis is conducted. Because the control law is elegantly designed on the basis of the polar‐coordinate‐based representation of error dynamics, the consequent maneuver behavior is natural, and the resulting path is short. Experimental results are provided to verify the performance of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents an on-line learning adaptive neural control scheme for helicopters performing highly nonlinear maneuvers. The online learning adaptive neural controller compensates the nonlinearities in the system and uncertainties in the modeling of the dynamics to provide the desired performance. The control strategy uses a neural controller aiding an existing conventional controller. The neural controller is based on a online learning dynamic radial basis function network, which uses a Lyapunov based on-line parameter update rule integrated with a neuron growth and pruning criteria. The online learning dynamic radial basis function network does not require a priori training and also it develops a compact network for implementation. The proposed adaptive law provides necessary global stability and better tracking performance. Simulation studies have been carried-out using a nonlinear (desktop) simulation model similar to that of a BO105 helicopter. The performances of the proposed adaptive controller clearly shows that it is very effective when the helicopter is performing highly nonlinear maneuvers. Finally, the robustness of the controller has been evaluated using the attitude quickness parameters (handling quality index) at different speed and flight conditions. The results indicate that the proposed online learning neural controller adapts faster and provides the necessary tracking performance for the helicopter executing highly nonlinear maneuvers.  相似文献   

6.
This paper presents an adaptive control architecture, where evolutionary learning is applied for initial learning and real-time tuning of a fuzzy logic controller. The initial learning phase involves identification of an artificial neural network model of the process and subsequent development of a fuzzy controller with parameters obtained via a genetic search. The neural network model is utilized for evaluating trial fuzzy controllers during the genetic search. The proposed adaptive mechanism is based on the concept of perpetual evolution, where parameters of the fuzzy controller are updated at each time step with solutions extracted from a continuously evolving population of trials. There are two mechanisms that accommodate the real-time changes in the control task and/or the process into the continuous genetic search: a scheme that dynamically modifies the fitness evaluation criteria of the genetic algorithm, and an online learning of the neural network model used for evaluating the trial controllers. The potential of using evolutionary learning for real-time adaptive control is illustrated through computer simulations, where the proposed technique is applied to a chemical process control problem  相似文献   

7.
Since vessel dynamics could vary during maneuvering because of load changes, speed changing, environmental disturbances, aging of mechanism, etc., the performance of model‐based path following control may be degraded if the controller uses the same motion model all the time. This article proposes an adaptive path following control method based on least squares support vector machines (LS‐SVM) to deal with parameter changes of the motion model. The path following controller consists of two components: the online identification of varying parameters and model predictive control (MPC) using the adaptively identified models. For the online parameter identification, an improved online LS‐SVM identification method is proposed based on weighted LS‐SVM. Specifically, the objective function of LS‐SVM is modified to decrease the errors of parameter estimation, an index is proposed to detect the possible model changes, which speeds up the rate of parameter convergence, and the sliding data window strategy is used to realize the online identification. MPC is combined with the line‐of‐sight guidance to track straight line reference paths. Finally, case studies are conducted to verify the effectiveness of the proposed path following adaptive controller. Typical parameter varying scenarios, such as rudder aging, current variations and changes of the maneuverability are considered. Simulation results show that the proposed method can handle the above situations effectively.  相似文献   

8.
Credit assigned CMAC and its application to online learning robust controllers   总被引:16,自引:0,他引:16  
In this paper, a novel learning scheme is proposed to speed up the learning process in cerebellar model articulation controllers (CMAC). In the conventional CMAC learning scheme, the correct numbers of errors are equally distributed into all addressed hypercubes, regardless of the credibility of the hypercubes. The proposed learning approach uses the inverse of learned times of the addressed hypercubes as the credibility (confidence) of the learned values, resulting in learning speed becoming very fast. To further demonstrate online learning capability of the proposed credit assigned CMAC learning scheme, this paper also presents a learning robust controller that can actually learn online. Based on robust controllers presented in the literature, the proposed online learning robust controller uses previous control input, current output acceleration, and current desired output as the state to define the nominal effective moment of the system from the CMAC table. An initial trial mechanism for the early learning stage is also proposed. With our proposed credit-assigned CMAC, the robust learning controller can accurately trace various trajectories online.  相似文献   

9.
The novel features of an adaptive PID-like neurocontrol scheme for nonlinear plants are presented. The controller tuning is based on an estimate of the command-error on its output by using a neural predictive model. A robust online learning algorithm, based on the direct use of sliding mode control (SMC) theory is applied. The proposed approach allows handling of the plant-model mismatches, uncertainties and parameters changes. The results show that both the plant model and the controller inherit some of the advantages of SMC, such as high speed of learning and robustness.  相似文献   

10.
An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning properties and thereby is able to handle robotic systems with both time-varying periodic uncertainties and time invariant parameters. Theoretical proofs are established to show that proposed controllers ensure asymptotical tracking performance. The effectiveness of the proposed approaches is validated through extensive numerical simulation results.  相似文献   

11.
Hanlei  Yongchun   《Automatica》2009,45(9):2114-2119
It has been about two decades since the first globally convergent adaptive tracking controller was derived for robots with dynamic uncertainties. However, not until recently has the problem of concurrent adaptation to both the kinematic and dynamic uncertainties found its solution. This adaptive controller belongs to passivity-based control. Though passivity-based controllers have many attractive properties, in general, they are not able to guarantee the uniform performance of the robot over the entire workspace. Even in the ideal case of perfect knowledge of the manipulator parameters, the closed-loop system remains nonlinear and coupled. Thus the closed-loop tracking performance is difficult to quantify, while the inverse dynamics controllers can overcome these deficiencies. Therefore, in this work, we will develop a new adaptive Jacobian tracking controller based on the inverse manipulator dynamics. Using the Lyapunov approach, we have proved that the end-effector motion tracking errors converge asymptotically to zero. Simulation results are presented to show the performance of the proposed controller.  相似文献   

12.
A neuro fuzzy system which is embedded in the conventional control theory is proposed to tackle physical learning control problems. The control scheme is composed of two elements. The first element, the fuzzy sliding mode controller (FSMC), is used to drive the state variables to a specific switching hyperplane or a desired trajectory. The second one is developed based on the concept of the self organizing fuzzy cerebellar model articulation controller (FCMAC) and adaptive heuristic critic (AHC). Both compose a forward compensator to reduce the chattering effect or cancel the influence of system uncertainties. A geometrical explanation on how the FCMAC algorithm works is provided and some refined procedures of the AHC are presented as well. Simulations on smooth motion of a three-link robot is given to illustrate the performance and applicability of the proposed control scheme.  相似文献   

13.
The conventional cerebellar model articulation controllers (CMAC) learning scheme equally distributes the correcting errors into all addressed hypercubes, regardless of the credibility of those hypercubes. This paper presents the adaptive fault-tolerant control scheme of non-linear systems using a fuzzy credit assignment CMAC neural network online fault learning approach. The credit assignment concept is introduced into fuzzy CMAC weight adjusting to use the learned times of addressed hypercubes as the credibility of CMAC. The correcting errors are proportional to the inversion of learned times of addressed hypercubes. With this fault learning model, the learning speed of fault can be improved. After the unknown fault is estimated, online, by using the fuzzy credit assignment CMAC, the effective control law reconfiguration strategy based on the sliding mode control technique is used to compensate for the effect of the fault. The proposed fault-tolerant controller adjusts its control signal by adding a corrective sliding mode control signal to confine the system performance within a boundary layer. The numerical simulations demonstrate the effectiveness of the proposed CMAC algorithm and fault-tolerant controller.  相似文献   

14.
This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller (BSMC) with adaptive radial basis function neural network (RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances.   相似文献   

15.
Robust neural-network control of rigid-link electrically drivenrobots   总被引:1,自引:0,他引:1  
A robust neural-network (NN) controller is proposed for the motion control of rigid-link electrically driven (RLED) robots. Two-layer NN's are used to approximate two very complicated nonlinear functions. The main advantage of our approach is that the NN weights are tuned online, with no off-line learning phase required. Most importantly, we can guarantee the uniformly ultimately bounded (UUB) stability of tracking errors and NN weights. When compared with standard adaptive robot controllers, we do not require lengthy and tedious preliminary analysis to determine a regression matrix. The controller can be regarded as a universal reusable controller because the same controller can be applied to any type of RLED robots without any modifications.  相似文献   

16.
This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

17.
针对四旋翼无人机姿态控制中模型不完整、部分参数和扰动不确定的问题,提出了一种基于神经网络的自适应控制方法,采用RBF神经网络对无人机姿态动力学模型中不确定和扰动部分进行学习,设计了以类反步法为基础,包含反馈控制和神经网络控制的自适应控制器,实现了对未知动态的准确逼近,解决了传统控制方法中过于依赖精确模型的问题。同时设计了神经网络的权值自适应律,实现了控制过程中的在线学习和调整,并且通过李雅普诺夫方法证明了闭环系统的稳定性。仿真结果表明,在存在较大扰动的情况下,上述控制器可得到很好的控制效果,可以实现误差的快速收敛,具有较好的鲁棒性和自适应性。  相似文献   

18.
针对船舶在海上运动的大时滞和动态时变等特点,提出基于一种变结构径向基函数(RBF)神经网络的预测PID控制器.通过建立反映系统动态变化的滑动数据窗口,在线序贯学习窗口内的数据,动态调整隐层节点与隐层至输出层的连接权值,得到结构可自适应变化的RBF网络.将该变结构RBF网络用于预测PID控制器中系统状态的在线多步预测,通过得到的预测模型灵敏度信息在线调整PID控制器参数以控制系统的输出.将该控制器用于船舶航向跟踪控制的仿真实验,结果表明该控制器具有良好的的适应性和鲁棒性.  相似文献   

19.
Many adaptive robot controllers have been proposed in the literature to solve manipulator trajectory tracking problems for high-speed operations in the presence of parameter uncertainties. However, most of these controllers stem from the applications of the existing adaptive control theory, which is traditionally focused on tracking slowly time-varying parameters. In fact, manipulator dynamics have fast transient processes for high-speed operations and load changes are abrupt. These observations motivate the present research to incorporate change detection techniques into self-tuning schemes for tracking abrupt load variations and achieving fast load adaptation. To this end, a robustly global stabilizing controller for a robot model with parametric and non-parametric uncertainies is developed based on the Lyapunov second method, and it is then made adaptive via the self-tuning regulator concept. The two-model approach to online change detection in load is used and the estimation algorithm is reinitialized once load changes are detected. This allows a much faster adaptive identification of load parameters than the ordinary forgetting factor approach. Simulation results demonstrate that the proposed controller achieves better tracking accuracy than the existing adaptive and non-adaptive controllers.  相似文献   

20.
The attitude tracking of a rigid spacecraft is approached in the presence of uncertain inertias, unknown disturbances, and sudden actuator faults. First, a novel integral terminal sliding mode (ITSM) is designed such that the sliding motion realizes the action of a quaternion‐based nonlinear proportional‐derivative controller. More precisely, on the ITSM, the attitude dynamics behave equivalently to an uncertainty‐free system, and finite‐time convergence of the tracking error is achieved almost globally. A basic ITSM controller is then designed to ensure the ITSM from onset when an upper bound on the system uncertainties is known. Further, to remove this requirement, adaptive techniques are employed to compensate for the uncertainties, and the resultant adaptive ITSM controller stabilizes the system states to a small neighborhood around the sliding surface in finite time. The proposed schemes avoid the singularity intrinsic to terminal sliding mode‐based controllers and the unwinding phenomenon associated with some quaternion‐based controllers. Numerical examples demonstrate the advantageous features of the proposed algorithm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号