首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
辽宁省玉米镰孢穗腐病病原菌的鉴定与分布   总被引:1,自引:0,他引:1  
为明确辽宁省玉米镰孢穗腐病的病原菌种类及其分布特征,采用形态学与分子生物学鉴定方法,对2015年9月采自辽宁省13个地区的84份玉米穗腐病样品进行分离鉴定,同时依据镰孢菌分离频率确定其在辽宁省玉米生态区的分布特征。结果表明,从辽宁省84个玉米穗腐病样分离物中鉴定出3个种,即拟轮枝镰孢菌Fusarium verticillioides、禾谷镰孢菌F.graminearum和层出镰孢菌F.proliferatum,分别为67、9和8株,占79.77%、10.71%和9.52%。按照柯赫式法则,验证了3种镰孢菌代表菌株FV-39、FG-1和FP-2是玉米品种郑单958穗腐病的致病菌。拟轮枝镰孢菌为辽宁省玉米镰孢穗腐病的优势致病菌,广泛分布于辽东、辽南、辽中、辽北和辽西5个玉米生态区,分别占16.67%、11.90%、21.42%、10.72%和19.05%;禾谷镰孢菌主要分布于辽西地区,层出镰孢菌主要分布于辽中和辽北地区。  相似文献   

2.
为了阐明海南省玉米穗腐病病原菌的种类,结合形态学和分子生物学方法对83份病样进行了病原菌的分离和鉴定,最终获得12种病原菌,包括拟轮枝镰孢(Fusarium verticillioides)、层出镰孢(F.proliferatum)、亚粘团镰孢(F.subglutinans)、木贼镰孢(F.equiseti)、新知镰孢(F.andiyazi)、棘孢木霉(Trichoderma asperellum)、拟康宁木霉(T.koningiopsis)、卵孢木霉(T.ovalisporum)、喙刚毛球腔菌(Exserohilum rostratum)、玉蜀黍平脐蠕孢(Bipolaris maydis)、草酸青霉(Penicillium oxalicum)和可可毛色二孢(Lasiodiplodia theobromae)。其中,拟轮枝镰孢分离频率占65.06%,为优势种。以拟轮枝镰孢的EF-1α、histone 3和β-tubulin基因序列为基础进行多基因家系分析,以明确海南省与内陆部分省份不同菌株之间的遗传关系。结果表明,海南省内菌株之间具有丰富的遗传多样性,而且海南省和内陆省份菌株之间存在高频率的基因交流。  相似文献   

3.
魏琪  廖露露  陈莉  齐永霞 《植物保护》2019,45(5):221-225
为明确安徽省玉米穗腐病主要致病镰孢菌的种类,采用单孢分离、形态学鉴定和分子生物学鉴定的方法,对2017年采集自安徽省6个玉米主产区——合肥市、蚌埠市、淮北市、阜阳市、亳州市和宿州市的玉米穗腐病病样进行了分离鉴定。在获得的455株镰孢菌中,拟轮枝镰孢菌、禾谷镰孢复合种、层出镰孢菌、尖孢镰孢菌和黄色镰孢菌的分离频率分别为59.13%、21.28%、13.68%、5.12%和0.79%。其中拟轮枝镰孢菌在各地的分布最广,属于安徽省的优势致病镰孢菌。  相似文献   

4.
 本研究对2015年收集的春玉米区玉米穗腐病样本的病原菌进行了分离鉴定。结果表明,禾谷镰孢复合种(Fusarium graminearum species complex)的总分离频率最高,为35.90%,为优势菌。进一步分析显示,山西、河北、吉林和黑龙江省以禾谷镰孢复合种为主,分离频率分别为81.25%、 75.00%、 44.00%和44.44%;内蒙古以拟轮枝镰孢菌(F. verticillioides)为主,分离频率为56.25%;辽宁省拟轮枝镰孢菌和哈茨木霉(Trichoderma harzianum)的分离频率分别为34.48%和31.03%;而在陕西省,禾谷镰孢复合种、拟轮枝镰孢菌和亚粘团镰孢菌(F. subglutinans)分离频率均为28.57%。以禾谷镰孢复合种的EF-1α基因序列为基础构建系统发生树,进一步对分离到的禾谷镰孢复合种进行亚种鉴定。结果表明,春玉米区禾谷镰孢复合种为禾谷镰孢菌和布氏镰孢菌,且以布氏镰孢菌为主。  相似文献   

5.
重庆及周边地区玉米穗腐病致病镰孢菌的分离与鉴定   总被引:3,自引:1,他引:2  
为明确重庆及周边地区玉米穗腐病致病镰孢菌的种群组成及其分布,于2014—2015年在32个区县98个乡镇采集玉米穗腐病样品,采用种子健康检测法分离病原物,通过形态学特性、培养特征和分子生物学等方法鉴定镰孢菌种。结果表明,在获得的111个镰孢菌分离物中鉴定出10种致病镰孢菌,分别为拟轮枝镰孢、层出镰孢、禾谷镰孢复合种、尖镰孢复合种、藤仓镰孢、木贼镰孢、黄色镰孢、变红镰孢、九州镰孢和茄镰孢,其总分离频率依次为38.70%、17.10%、17.10%、11.70%、7.20%、3.60%、1.80%、0.90%、0.90%和0.90%;除渝东南区域外,在其它区域拟轮枝镰孢的分离频率最高,其次为层出镰孢和禾谷镰孢复合种;对禾谷镰孢复合种分离物的翻译延伸因子TEF-1α基因测序比对发现,该复合种由南方镰孢和亚洲镰孢组成。研究表明,重庆地区玉米穗腐病优势致病镰孢菌为拟轮枝镰孢、禾谷镰孢复合种和层出镰孢。  相似文献   

6.
为了明确聊城市引起仓储玉米籽粒霉烂的病原菌种类,采用形态学和分子生物学相结合的方法对54份样本进行了病原菌分离和鉴定。结果表明,优势病原菌为拟轮枝镰孢Fusarium verticillioides,其次为哈茨木霉复合种Trichoderma harzianum species complex,分离频率分别为31.48%和24.07%,其他病原菌如禾谷镰孢复合种F.graminearum species complex、层出镰孢F.proliferatum、棘孢木霉T.asperellum、黑曲霉Aspergillus niger、黄曲霉A.flavus、草酸青霉Penicillium oxalicum和玉蜀黍丝核菌Rhizoctonia zeae的分离频率分别为9.26%、1.85%、1.85%、5.56%、5.56%、14.81%和3.70%。基于11个哈茨木霉复合种分离物的EF-1α基因序列进行了系统发育分析,结果表明该地区分离到的均为非洲哈茨木霉T.afroharzianum。致病性测定结果显示,非洲哈茨木霉是玉米穗腐病的致病菌且对玉米产量有一定影响。  相似文献   

7.
我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定   总被引:9,自引:4,他引:5  
为阐明中国玉米镰孢穗腐病的主要致病镰孢菌种类及其分布特征,采用形态学、培养特征及特异性分子鉴定方法,对采集自我国18省100个县的玉米籽粒样品进行分离鉴定,并通过TEF-1α基因序列测定解析禾谷镰孢复合种的构成.结果表明,在我国引起玉米穗腐病的主要致病菌为镰孢菌,分离频率为56.0%,其次还有青霉菌、曲霉菌、木霉菌等.138个镰孢菌分离物中鉴别出7个种及复合种,其中拟轮枝镰孢菌Fusarium verticillioides(56.5%)和禾谷镰孢复合种F.graminearum species complex(37.7%)为广泛分布的优势致病种类,其余为黄色镰孢菌F.culmorum(2.2%)、层出镰孢菌F.proliferatum(1.5%)、尖镰孢复合种F.oxysporum species complex(0.7%)、茄镰孢复合种F.solani species complex(0.7%)和亚粘团镰孢菌F.subglutinans(0.7%).在禾谷镰孢复合种中鉴定出3个独立种:广泛分布的禾谷镰孢菌F.graminearum sensu stricto(59.6%)、分布在云南、贵州及陕西商洛等南方生态区的南方镰孢菌F.meridionale(25.0%)和分布在内蒙古、吉林、山西、河北及北京等北方生态区的布氏镰孢菌F.boothii(11.5%).  相似文献   

8.
为明确新疆维吾尔自治区(简称新疆)绿洲灌溉玉米产区玉米茎腐病优势病原菌的种类组成及时空变化差异,于2020年和2021年在新疆主要玉米种植区共采集335株病样,获得601个分离物,通过形态学结合分子生物学技术对各代表菌株的rDNA-ITS和TEF-1α基因序列进行扩增和同源率比对鉴定。结果表明,镰孢菌共560株,占比93.18%,其中拟轮枝镰孢菌Fusarium verticillioides、层出镰孢菌F. proliferatum、禾谷镰孢菌F. graminearum、尖孢镰孢菌F. oxysporum和腐皮镰孢菌F. solani为主要致病菌,2020年分离频率依次为44.10%、29.77%、9.77%、5.69%和5.23%,2021年分离频率依次为50.95%、38.22%、0、2.55%和0。拟轮枝镰孢菌和层出镰孢菌在5个地州均有分布,且总分离频率显著高于其他病原菌。苗期接种结果表明,禾谷镰孢菌致病率(86.30%)、病情指数(35.33)显著高于其他4种病原菌,为强致病菌;层出镰孢菌和拟轮枝镰孢菌的致病率和病情指数分别为63.33%、16.00和55.00%、11.6...  相似文献   

9.
 为明确河北省夏玉米区玉米穗腐病的发生情况、病原菌组成及地区对病原菌种类的影响,本团队于2016年和2017年在玉米收获前期对玉米穗腐病的发生情况进行调查,并通过生物学方法对随机采回的样本进行分离鉴定。田间调查结果表明,与2016年相比,2017年河北省玉米种植面积有所减少,玉米穗腐病的发病率有所下降。分离鉴定结果表明,引起河北省夏玉米区穗腐病的优势病原菌为拟轮枝镰孢菌(Fusarium verticillioides),分离频率为63.49%,其他病原菌如层出镰孢菌(F. proliferatum)、禾谷镰孢菌(F. graminearum)、变红镰孢菌(F. incarnatum)、黑曲霉(Aspergillus niger)、黄曲霉(A. flavus)、草酸青霉(Penicillium oxalicum)和哈茨木霉(Trichoderma harzianum)的分离频率分别为19.05%、6.35%、1.59%、14.29%、3.17%、9.52%和1.59%。为明确伏马毒素基因在潜在产伏马毒素镰孢菌鉴定中的作用,拟轮枝镰孢菌、层出镰孢菌和藤仓镰孢菌(F. fujikuroi)分别以EF-1α和FUM1基因序列为基础构建系统发育树。结果表明,两个系统发育树拓扑结构相似,伏马毒素基因可用于潜在产伏马毒素镰孢菌种的鉴定,基于FUM1基因的种间遗传距离大于基于EF-1α基因的种间遗传距离,而种内遗传距离的结论则与之相反。  相似文献   

10.
江苏省玉米茎腐病菌种类鉴定   总被引:8,自引:0,他引:8  
作者于1992~1995年,从江苏省玉米主产区采集的玉米茎腐病标样中分离获得105个菌株,经鉴定,致病菌种类有肿囊腐霉(Pythium inflatum)、禾生腐霉(P.graminicola)、串珠镰孢浙江变种(Fusarium moniliforme var.zhejiangensis)、串珠镰孢中间变种(F.moniliforme var.intermedium)、串珠镰孢胶孢变种(F.moniliforme var.subglutinans)、禾谷镰孢(F.graminearum)、拟枝孢镰孢厚膜变种(F.sporotrichioides var.chlamydosporum)、尖孢镰孢芬芳变种(F.oxysporum var.redolens)、接骨木镰孢(F.sambucinum)、茄病镰孢(F.solani)、半裸镰孢(F.semitectum)等11个种或变种。其中串珠镰孢浙江变种出现频率最高,占44.8%,肿囊腐霉和禾生腐霉致病力最强,这两类菌是江苏玉米茎腐病主要病原。  相似文献   

11.
玉米内生菌L10的分离、鉴定及拮抗活性   总被引:2,自引:1,他引:2  
为获得对玉米茎腐病主要病原菌禾谷镰孢Fusarium graminearum有明显拮抗作用的玉米内生菌,采用平板对峙法从成熟健康玉米茎秆中筛选禾谷镰孢拮抗菌株,并分析其抗菌谱;通过形态特征、生理生化特性及16S rDNA序列分析进行菌种鉴定;利用盆栽生防试验检测其对玉米茎腐病的防治效果。结果表明,共分离获得了164株玉米内生细菌菌株,其中L10菌株对禾谷镰孢具有较好的抑制效果,抑菌圈半径达1.68 cm;该菌对玉米大斑病菌Setosphaeria turcica、层出镰孢F. proliferatum、禾谷镰孢F. graminearum、拟轮枝镰孢F. verticilliodes、玉米弯孢叶斑病菌Curvularia lunata、玉米小斑病菌Bipolaris maydis、立枯丝核菌Rhizoctonia solani、茄链格孢Alternaria solani共8种植物病原菌均有拮抗作用,尤其对禾谷镰孢抑制效果最佳;结合形态特征、生理生化性质及16S rDNA序列分析,将L10菌株鉴定为多粘类芽胞杆菌Paenibacillus polymyxa。L10菌株脂肽类物质对禾谷镰孢菌具有较好的抑制活性,且盆栽生防试验结果显示该菌株对玉米茎腐病具有一定的防治效果。表明菌株L10对玉米镰孢茎腐病的防治具有一定潜力。  相似文献   

12.
The phytotoxicity of the Fusarium trichothecene and fumonisin mycotoxins has led to speculation that both toxins are involved in plant pathogenesis. This subject has been addressed by examining virulence of trichothecene and fumonisin-nonproducing mutants of Fusarium in field tests. Mutants were generated by transformation-mediated disruption of genes encoding enzymes that catalyze early steps in the biosynthesis of each toxin. Two economically important species of Fusarium were selected for these studies: the trichothecene-producing species Fusarium graminearum, which causes wheat head blight and maize ear rot, and the fumonisin-producing species F. verticillioides, which causes maize ear rot. Trichothecene-non-producing mutants of F. graminearum caused less disease than the wild-type strain from which they were derived on both wheat and maize, although differences in virulence on maize were not observed under hot and dry environmental conditions. Genetic analyses of the mutants demonstrated that the reduced virulence on wheat was caused by the loss of trichothecene production rather than by a non-target mutation induced by the gene disruption procedure. Although the analyses of virulence of fumonisin-non-producing mutants of F. verticillioides are not complete, to date, the mutants have been as virulent on maize ears as their wild-type progenitor strains. The finding that trichothecene production contributes to the virulence of F. graminearum suggests that it may be possible to generate plants that are resistant to this fungus by increasing their resistance to trichothecenes. As a result, several researchers are trying to identify trichothecene resistance genes and transfer them to crop species.  相似文献   

13.
The distribution and co‐occurrence of four Fusarium species and their mycotoxins were investigated in maize samples from two susceptible cultivars collected at 14 localities in South Africa during 2008 and 2009. Real‐time PCR was used to quantify the respective Fusarium species in maize grain, and mycotoxins were quantified by multi‐toxin analysis using HPLC‐MS. In 2008, F. graminearum was the predominant species associated with maize ear rot in the eastern Free State, Mpumalanga and KwaZulu‐Natal provinces, while F. verticillioides was predominant in the Northwest, the western Free State and the Northern Cape provinces. In 2009, maize ear rot infection was higher and F. graminearum became the predominant species found in the Northwest province. Fusarium subglutinans was associated with maize ear rot in both years at most of the localities, while F. proliferatum was not detected from any of the localities. Type B trichothecenes, especially deoxynivalenol, and zearalenone were well correlated with the amount of F. graminearum, fumonisins with F. verticillioides, and moniliformin and beauvericin with F. subglutinans. This information is of great importance to aid understanding of the distribution and epidemiology of Fusarium species in South Africa, and for predicting mycotoxin contamination risks and implementing preventative disease management strategies.  相似文献   

14.
Several Fusarium species occurring worldwide on maize as causal agents of ear rot, are capable of producing mycotoxins in infected kernels, some of which have a notable impact on human and animal health. The main groups of Fusarium toxins commonly found are: trichothecenes, zearalenones, fumonisins, and moniliformin. In addition, beauvericin and fusaproliferin have been found in Fusarium-infected maize ears. Zearalenone and deoxynivalenol are commonly found in maize red ear rot, which is essentially caused by species of the Discolour section, particularly F. graminearum. Moreover, nivalenol and fusarenone-X were often found associated with the occasional occurrence of F. cerealis, and diacetoxyscirpenol and T-2 toxin with the occurrence of F. poae and F. sporotrichioides, respectively. In addition, the occurrence of F. avenaceum and F. subglutinans usually led to the accumulation of moniliformin. In maize pink ear rot, which is mainly caused by F. verticillioides, there is increasing evidence of the wide occurrence of fumonisin B1. This carcinogenic toxin is usually found in association with moniliformin, beauvericin, and fusaproliferin, both in central Europe due to the co-occurrence of F. subglutinans, and in southern Europe where the spread of F. verticillioides is reinforced by the widespread presence of F. proliferatum capable of producing fumonisin B1, moniliformin, beauvericin, and fusaproliferin.  相似文献   

15.
Epidemiology of Fusarium Diseases and their Mycotoxins in Maize Ears   总被引:1,自引:0,他引:1  
Fusarium species cause two distinct diseases on ears of maize, Fusarium ear rot (or pink ear rot) and Gibberella ear rot (or red ear rot), both of which can result in mycotoxin contamination of maize grain. The primary causal agent for Fusarium ear rot is Fusarium verticillioides, but F. subglutinans and F. proliferatum are also important. Gibberella ear rot is caused primarily by F. graminearum, but F. culmorum can also be important, especially in Europe. Aspects of the epidemiology of both diseases have been studied for decades, but only recently have efforts been made to synthesize this information into comprehensive models of disease development. Much of the work on F. graminearum has focused on Fusarium head blight of small-grain crops, but some of the results obtained are also relevant to maize. The primary mycotoxins produced by these fungi, fumonisins and deoxynivalenol, have differing roles in the disease-cycle, and these roles are not completely understood, especially in the case of fumonisins. Progress is being made toward accurate models for risk assessment of both diseases, but key challenges remain in terms of integrating models of pre- and post-infection events, quantifying the roles of insects in these diseases, and characterizing interactions among competing fungi and the environment.  相似文献   

16.
桃蛀螟为害夏玉米果穗对产量的影响   总被引:2,自引:2,他引:0  
为明确桃蛀螟Conogethes punctiferalis(Guenée)为害夏玉米果穗对产量的影响,于2012—2013年通过人工接种法将桃蛀螟初孵幼虫接到吐丝期玉米果穗上调查果穗被害程度,分析接虫密度对产量构成因素、穗腐病发生及产量损失的影响。结果表明,桃蛀螟主要通过降低百粒重、缩短果穗长度和减少行粒数等影响产量;当接虫密度每穗为1、3、5和10头时,不同处理的百粒重均比对照显著降低0.65、1.03、1.07和1.60 g;当接虫密度为每穗5和10头时,果穗长度比对照分别显著缩短9.66 mm和13.17 mm,行粒数减少5.15和5.45粒;桃蛀螟为害可诱发穗腐病的发生,主要病原菌为轮枝镰孢菌、青霉菌和禾谷镰孢菌,引起穗腐病的发生率分别为84.91%、54.45%和40.97%;接虫密度为每穗1、3、5和10头时,平均单穗产量损失率分别为0.73%、4.19%、11.65%和17.71%。研究表明,桃蛀螟为害不仅直接造成产量损失,还可加重穗腐病发生,影响玉米的质量。  相似文献   

17.
The biocontrol effect of Clonostachys rosea (strains 016 and 1457) on Fusarium graminearum, F. avenaceum, F. verticillioides, F. langsethiae, F. poae, F. sporotrichioides, F. culmorum and Microdochium nivale was evaluated on naturally infected wheat stalks exposed to field conditions for 180 days. Experiments were conducted at two locations in Argentina, Marcos Juarez and Río Cuarto. Antagonists were applied as conidial suspensions at two inoculum levels. Pathogens were quantified by TaqMan real‐time qPCR. During the first year at Marcos Juarez, biocontrol was observed in one antagonist treatment for F. graminearum after 90 days (73% reduction) but after 180 days, the pathogen decreased to undetectable levels. During the second year, biocontrol was observed in three antagonist treatments for F. graminearum and F. avenaceum (68·3% and 98·9% DNA reduction, respectively, after 90 days). Fusarium verticillioides was not controlled at Marcos Juarez. At Río Cuarto, biocontrol effects were observed in several treatments at different intervals, with a mean DNA reduction of 88·7% for F. graminearum and F. avenaceum, and 100% reduction for F. verticillioides in two treatments after 180 days. Populations of F. avenaceum and F. verticillioides were stable; meanwhile, F. graminearum population levels varied during the first 90 days, and low levels were observed after 180 days. The other pathogens were not detected. The study showed that wheat stalks were important reservoirs for F. avenaceum and F. verticillioides populations but less favourable for F. graminearum survival. Clonostachys rosea (strain 1457) showed potential to reduce the Fusarium spp. on wheat stalks.  相似文献   

18.
Fusarium graminearum and F. verticillioides are among the most important pathogens causing ear rot of maize in Central Europe. Our objectives were to (1) compare eight isolates of each species on two susceptible inbred lines for their variation in ear rot rating and mycotoxin production across 3 years, and (2) analyse two susceptible and three resistant inbred lines for potential isolate x line interactions across 2 years by silk-channel inoculation. Ear rot rating, zearalenone (ZEA) and deoxynivalenol (DON) concentrations were evaluated for all F. graminearum isolates. In addition, nivalenol (NIV) concentrations were analysed for two NIV producers. Fumonisin (FUM) concentrations were measured for all F. verticillioides isolates. Mean ear rot severity was highest for DON producers of F. graminearum (62.9% of the ear covered by mycelium), followed by NIV producers of the same species (24.2%) and lowest for F. verticillioides isolates (9.8%). For the latter species, ear rot severities differed highly among years (2006: 24%, 2007: 3%, 2008: 7%). Mycotoxin concentrations among isolates showed a broad range (DON: 100–284 mg kg−1, NIV: 15–38 mg kg−1, ZEA: 1.1–49.5 mg kg−1, FUM: 14.5–57.5 mg kg−1). Genotypic variances were significant for isolates and inbred lines in all traits and for both species. Isolate x line interactions were significant only for ear rot rating (P < 0.01) and DON concentration (P < 0.05) of the F. graminearum isolates, but no rank reversals occurred. Most isolates were capable of differentiating the susceptible from the resistant lines for ear rot severity. For resistance screening, a sufficiently aggressive isolate should be used to warrant maximal differentiation among inbred lines. With respect to F. verticillioides infections, high FUM concentrations were found in grains from ears with minimal disease symptoms.  相似文献   

19.
Fungal interactions of Fusarium verticillioides and F. graminearum in maize ears and the impact on fungal development and toxin accumulation were investigated in a 2‐year field study at two locations in France. Maize ears were inoculated either with a spore mixture of F. graminearum and F. verticillioides or using a sequential inoculation procedure consisting of a first inoculation with F. graminearum followed by a second with F. verticillioides 1 week later. Toxin and fungal biomass were assessed on mature kernels, using HPLC and quantitative PCR. Correlation between the levels of DNA and toxin was high concerning F. graminearum DNA and deoxynivalenol (R² = 0·73) and moderate for F. verticillioides DNA and fumonisin (R² = 0·44). Fusarium graminearum DNA either decreased in mixed inoculations or was not influenced by subsequent inoculations with F. verticillioides, compared to single inoculations. In contrast, F. verticillioides DNA either significantly increased or was not affected in mixed and sequential inoculations. In two of the replicates, it can be assumed that natural contamination by F. verticillioides was favoured by previous contamination with F. graminearum. Overall, the results suggest that F. verticillioides has competitive advantages over the F. graminearum strains. Additionally, the data provide, for the first time, key evidence that previous contamination by F. graminearum in maize ears can facilitate subsequent infections by F. verticillioides.  相似文献   

20.
Fungal incidence and mycotoxin contamination of farm-stored maize were assessed and compared in grain samples from three villages each in two agroecological zones over time. Maize samples were collected at 2 and 4 months after stocking from 72 farmers’ stores in 1996 and 1997 in the Humid Forest (HF) and Western Highlands (WHL) of Cameroon. Mycological assays of these samples revealed several fungal species.Nigrospora spp. were the most prevalent fungi in HF (32%) and WHL (30%) in 1996,Fusarium verticillioides (22%) andF. graminearum (27%) were also isolated from these samples. In the WHL in 1996, no significant difference in fungal incidence was found among villages for samples collected 2 months after harvest, but at 4 months incidence was significantly higherP<0.05). In 1997 the levels of fungal contamination were lower than in 1996. The incidence ofAspergillus spp. was low in general, ranging from 0.0 to 5.9% infected kernels. Analysis with thin layer chromatography detected low levels of aflatoxins in a few samples.F. verticillioides mycotoxin fumonisin Bi (300-26,000 ng/g) andF. graminearum metabolites deoxynivalenol (<100–l,300 ng/g) and zearalenone (<50–110 ng/g) were determined by means of polyclonal antibody competitive direct enzyme-linked immunosorbent assay. A significant correlation (r=0.72; P=0.0001) was found between the incidence ofF. graminearum and the contamination with deoxynivalenol. Storage time (2vs 4 months after stocking) had a significant positive effect (r=0.39; P=0.013) on the level of fumonisin B1. This is the first report of the natural occurrence of these mycotoxins in maize in Cameroon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号